Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)

In tropical countries, the palm oil industry discharges a large amount of wastewater. The wastewater can serve as an economical nutrient source or substrate that can support the cultivation of microalgae. This study aimed to identify the local species of microalgae potentially existing in the indust...

Full description

Saved in:
Bibliographic Details
Main Authors: Kamyab, Hesam, Chelliapan, Shreeshivadasan, Md. Din, Mohd. Fadhil, Lee, Chew Tin, Rezania, Shahabaldin, Khademi, Tayebeh, Bong, Cassendra Phun Chien
Format: Article
Published: AIDIC Servizi S.r.l. 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/84396/
https://doi.org/10.3303/CET1863016
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.84396
record_format eprints
spelling my.utm.843962019-12-28T01:55:47Z http://eprints.utm.my/id/eprint/84396/ Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME) Kamyab, Hesam Chelliapan, Shreeshivadasan Md. Din, Mohd. Fadhil Lee, Chew Tin Rezania, Shahabaldin Khademi, Tayebeh Bong, Cassendra Phun Chien TP Chemical technology In tropical countries, the palm oil industry discharges a large amount of wastewater. The wastewater can serve as an economical nutrient source or substrate that can support the cultivation of microalgae. This study aimed to identify the local species of microalgae potentially existing in the industrial wastewater of palm oil mill effluent (POME). POME was selected as the key source of waste due to its higher potential in producing lipids from microalgae as biofuel substrate. A novel green microalgal strain was isolated from POME of Kahang- Johor west palm oil mill in Malaysia and was identified as Chlamydomonas sp. and subsequently named UTM 98 with Catalogue No. of KR349061. This study emphasised the effectiveness of POME as the main carbon source to maintain the growth of microalgae and simultaneously to increase the lipid content. In this study, Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography (GC-FID) were used to identify andquantify lipids in the freshwater microalgae. Cultivation of microalgae were initially carried out in 250 mL Erlenmeyer flask containing 100 mL medium at ± 30 °C with continuous illumination (± 14 µmol-1 m-2 s-1) andup to 20 d of cultivations. Results demonstrated that on the chromatogram, the highest retention achieved is belong to palmitic acid (C16:0). Chlamydomonas incerta (C. incerta) species is found to contain shorter chain fatty acids, mainly 16 - 18 carbon length, which is ideal for biodiesel production. FTIR spectrum of POME treated biomass displayed the shifting of peak at 591 cm-1 and also removal of C-Cl stretching. The spectrum of POME effluent treated biomass revealed broad peak at 3,430 cm-1. The results of SEM micrographs showed that, after treating POME with C. incerta, the cells became slightly rough and corrugated textures and some particles were found on the surface of the cell wall. Using POME as a rich carbon and nutrient source is also a promising approach either as natural environment treatment or as high-lipid-content raw material for production of biofuel. AIDIC Servizi S.r.l. 2018 Article PeerReviewed Kamyab, Hesam and Chelliapan, Shreeshivadasan and Md. Din, Mohd. Fadhil and Lee, Chew Tin and Rezania, Shahabaldin and Khademi, Tayebeh and Bong, Cassendra Phun Chien (2018) Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME). Chemical Engineering Transactions, 63 . pp. 91-96. ISSN 2283-9216 https://doi.org/10.3303/CET1863016
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TP Chemical technology
spellingShingle TP Chemical technology
Kamyab, Hesam
Chelliapan, Shreeshivadasan
Md. Din, Mohd. Fadhil
Lee, Chew Tin
Rezania, Shahabaldin
Khademi, Tayebeh
Bong, Cassendra Phun Chien
Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
description In tropical countries, the palm oil industry discharges a large amount of wastewater. The wastewater can serve as an economical nutrient source or substrate that can support the cultivation of microalgae. This study aimed to identify the local species of microalgae potentially existing in the industrial wastewater of palm oil mill effluent (POME). POME was selected as the key source of waste due to its higher potential in producing lipids from microalgae as biofuel substrate. A novel green microalgal strain was isolated from POME of Kahang- Johor west palm oil mill in Malaysia and was identified as Chlamydomonas sp. and subsequently named UTM 98 with Catalogue No. of KR349061. This study emphasised the effectiveness of POME as the main carbon source to maintain the growth of microalgae and simultaneously to increase the lipid content. In this study, Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography (GC-FID) were used to identify andquantify lipids in the freshwater microalgae. Cultivation of microalgae were initially carried out in 250 mL Erlenmeyer flask containing 100 mL medium at ± 30 °C with continuous illumination (± 14 µmol-1 m-2 s-1) andup to 20 d of cultivations. Results demonstrated that on the chromatogram, the highest retention achieved is belong to palmitic acid (C16:0). Chlamydomonas incerta (C. incerta) species is found to contain shorter chain fatty acids, mainly 16 - 18 carbon length, which is ideal for biodiesel production. FTIR spectrum of POME treated biomass displayed the shifting of peak at 591 cm-1 and also removal of C-Cl stretching. The spectrum of POME effluent treated biomass revealed broad peak at 3,430 cm-1. The results of SEM micrographs showed that, after treating POME with C. incerta, the cells became slightly rough and corrugated textures and some particles were found on the surface of the cell wall. Using POME as a rich carbon and nutrient source is also a promising approach either as natural environment treatment or as high-lipid-content raw material for production of biofuel.
format Article
author Kamyab, Hesam
Chelliapan, Shreeshivadasan
Md. Din, Mohd. Fadhil
Lee, Chew Tin
Rezania, Shahabaldin
Khademi, Tayebeh
Bong, Cassendra Phun Chien
author_facet Kamyab, Hesam
Chelliapan, Shreeshivadasan
Md. Din, Mohd. Fadhil
Lee, Chew Tin
Rezania, Shahabaldin
Khademi, Tayebeh
Bong, Cassendra Phun Chien
author_sort Kamyab, Hesam
title Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
title_short Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
title_full Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
title_fullStr Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
title_full_unstemmed Isolate new microalgal strain for biodiesel production and using FTIR spectroscopy for assessment of pollutant removal from Palm Oil Mill Effluent (POME)
title_sort isolate new microalgal strain for biodiesel production and using ftir spectroscopy for assessment of pollutant removal from palm oil mill effluent (pome)
publisher AIDIC Servizi S.r.l.
publishDate 2018
url http://eprints.utm.my/id/eprint/84396/
https://doi.org/10.3303/CET1863016
_version_ 1654960081668669440