A markov-switching model approach to heart sound segmentation and classification

Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HM...

Full description

Saved in:
Bibliographic Details
Main Authors: Noman, F., Salleh, S. H., Ting, C. M., Samdin, S. B., Ombao, H., Hussain, H.
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/86186/
https://dx.doi.org/10.1109/JBHI.2019.2925036
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.86186
record_format eprints
spelling my.utm.861862021-02-23T08:58:49Z http://eprints.utm.my/id/eprint/86186/ A markov-switching model approach to heart sound segmentation and classification Noman, F. Salleh, S. H. Ting, C. M. Samdin, S. B. Ombao, H. Hussain, H. Q Science (General) Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs), which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features. Methods: We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state. To enhance robustness, we extend the MSAR model to a switching linear dynamic system (SLDS) that jointly model both the switching AR dynamics of underlying heart sound signals and the noise effects. We introduce a novel algorithm via fusion of switching Kalman filter and the duration-dependent Viterbi algorithm, which incorporates the duration of heart sound states to improve state decoding. Results: Evaluated on Physionet/CinC Challenge 2016 dataset, the proposed MSAR-SLDS approach significantly outperforms the hidden semi-Markov model (HSMM) in heart sound segmentation based on raw signals and comparable to a feature-based HSMM. The segmented labels were then used to train Gaussian-mixture HMM classifier for identification of abnormal beats, achieving high average precision of 86.1% on the same dataset including very noisy recordings. Conclusion: The proposed approach shows noticeable performance in heart sound segmentation and classification on a large noisy dataset. Significance: It is potentially useful in developing automated heart monitoring systems for pre-screening of heart pathologies. Institute of Electrical and Electronics Engineers Inc. 2020 Article PeerReviewed Noman, F. and Salleh, S. H. and Ting, C. M. and Samdin, S. B. and Ombao, H. and Hussain, H. (2020) A markov-switching model approach to heart sound segmentation and classification. IEEE Journal of Biomedical and Health Informatics, 24 (3). pp. 705-716. ISSN 2168-2194 https://dx.doi.org/10.1109/JBHI.2019.2925036 DOI:10.1109/JBHI.2019.2925036
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic Q Science (General)
spellingShingle Q Science (General)
Noman, F.
Salleh, S. H.
Ting, C. M.
Samdin, S. B.
Ombao, H.
Hussain, H.
A markov-switching model approach to heart sound segmentation and classification
description Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs), which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features. Methods: We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state. To enhance robustness, we extend the MSAR model to a switching linear dynamic system (SLDS) that jointly model both the switching AR dynamics of underlying heart sound signals and the noise effects. We introduce a novel algorithm via fusion of switching Kalman filter and the duration-dependent Viterbi algorithm, which incorporates the duration of heart sound states to improve state decoding. Results: Evaluated on Physionet/CinC Challenge 2016 dataset, the proposed MSAR-SLDS approach significantly outperforms the hidden semi-Markov model (HSMM) in heart sound segmentation based on raw signals and comparable to a feature-based HSMM. The segmented labels were then used to train Gaussian-mixture HMM classifier for identification of abnormal beats, achieving high average precision of 86.1% on the same dataset including very noisy recordings. Conclusion: The proposed approach shows noticeable performance in heart sound segmentation and classification on a large noisy dataset. Significance: It is potentially useful in developing automated heart monitoring systems for pre-screening of heart pathologies.
format Article
author Noman, F.
Salleh, S. H.
Ting, C. M.
Samdin, S. B.
Ombao, H.
Hussain, H.
author_facet Noman, F.
Salleh, S. H.
Ting, C. M.
Samdin, S. B.
Ombao, H.
Hussain, H.
author_sort Noman, F.
title A markov-switching model approach to heart sound segmentation and classification
title_short A markov-switching model approach to heart sound segmentation and classification
title_full A markov-switching model approach to heart sound segmentation and classification
title_fullStr A markov-switching model approach to heart sound segmentation and classification
title_full_unstemmed A markov-switching model approach to heart sound segmentation and classification
title_sort markov-switching model approach to heart sound segmentation and classification
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2020
url http://eprints.utm.my/id/eprint/86186/
https://dx.doi.org/10.1109/JBHI.2019.2925036
_version_ 1693725933112918016