Nonparametric Kernel estimation of annual maximum stream flow quantiles.

A nonparametric kernel methods is proposed and evaluated performance for estimating annual maximum stream flow quantiles. The bandwidth of the estimator is estimated by using an optimal technique and a cross-validation technique. Results obtained from a limited amount of real data from Malaysia show...

Full description

Saved in:
Bibliographic Details
Main Author: Shabri, Ani
Format: Article
Language:English
Published: Department of Mathematics, Faculty of Science 2002
Subjects:
Online Access:http://eprints.utm.my/id/eprint/8811/1/AniShabri2002_NonparametricKernelEstimationofAnnual.pdf
http://eprints.utm.my/id/eprint/8811/
http://portal.psz.utm.my/psz/index.php?option=com_content&task=view&id=128&Itemid=305&PHPSESSID=81b664e998055f65b4ccff8f61bf7cb2
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.8811
record_format eprints
spelling my.utm.88112010-06-02T01:58:08Z http://eprints.utm.my/id/eprint/8811/ Nonparametric Kernel estimation of annual maximum stream flow quantiles. Shabri, Ani QA Mathematics A nonparametric kernel methods is proposed and evaluated performance for estimating annual maximum stream flow quantiles. The bandwidth of the estimator is estimated by using an optimal technique and a cross-validation technique. Results obtained from a limited amount of real data from Malaysia show that quantiles estimated by nonparametric method using these techniques have small root mean square error and root mean absolute error. Based on correlation coefficient test shown that the nonparametric model approach is accurate, uniform and flexible alternatives to parametric models for flood frequency analysis. Department of Mathematics, Faculty of Science 2002-12 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/8811/1/AniShabri2002_NonparametricKernelEstimationofAnnual.pdf Shabri, Ani (2002) Nonparametric Kernel estimation of annual maximum stream flow quantiles. Matematika, 18 (2). pp. 99-107. ISSN 0127-8274 http://portal.psz.utm.my/psz/index.php?option=com_content&task=view&id=128&Itemid=305&PHPSESSID=81b664e998055f65b4ccff8f61bf7cb2
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Shabri, Ani
Nonparametric Kernel estimation of annual maximum stream flow quantiles.
description A nonparametric kernel methods is proposed and evaluated performance for estimating annual maximum stream flow quantiles. The bandwidth of the estimator is estimated by using an optimal technique and a cross-validation technique. Results obtained from a limited amount of real data from Malaysia show that quantiles estimated by nonparametric method using these techniques have small root mean square error and root mean absolute error. Based on correlation coefficient test shown that the nonparametric model approach is accurate, uniform and flexible alternatives to parametric models for flood frequency analysis.
format Article
author Shabri, Ani
author_facet Shabri, Ani
author_sort Shabri, Ani
title Nonparametric Kernel estimation of annual maximum stream flow quantiles.
title_short Nonparametric Kernel estimation of annual maximum stream flow quantiles.
title_full Nonparametric Kernel estimation of annual maximum stream flow quantiles.
title_fullStr Nonparametric Kernel estimation of annual maximum stream flow quantiles.
title_full_unstemmed Nonparametric Kernel estimation of annual maximum stream flow quantiles.
title_sort nonparametric kernel estimation of annual maximum stream flow quantiles.
publisher Department of Mathematics, Faculty of Science
publishDate 2002
url http://eprints.utm.my/id/eprint/8811/1/AniShabri2002_NonparametricKernelEstimationofAnnual.pdf
http://eprints.utm.my/id/eprint/8811/
http://portal.psz.utm.my/psz/index.php?option=com_content&task=view&id=128&Itemid=305&PHPSESSID=81b664e998055f65b4ccff8f61bf7cb2
_version_ 1643645076068368384