Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming
4Highly reducible Ni-dispersed TiO2-ZnTiO3 perovskite nanocomposite with different anatase/rutile contents of TiO2 for enhanced phenol steam reforming (PSR) towards selective H2 production has been investigated. In-situ growth of TiO2 nanoparticles (NPs) over ZnTiO3 cubic perovskite was obtained thr...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/88710/ http://dx.doi.org/10.1016/j.enconman.2019.112064 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.88710 |
---|---|
record_format |
eprints |
spelling |
my.utm.887102020-12-15T10:39:43Z http://eprints.utm.my/id/eprint/88710/ Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming Baamran, Khaled Saeed Muhammad Tahir, Muhammad Tahir TP Chemical technology 4Highly reducible Ni-dispersed TiO2-ZnTiO3 perovskite nanocomposite with different anatase/rutile contents of TiO2 for enhanced phenol steam reforming (PSR) towards selective H2 production has been investigated. In-situ growth of TiO2 nanoparticles (NPs) over ZnTiO3 cubic perovskite was obtained through hydrothermal assisted impregnation method. TiO2-ZnTiO3 composite performance was entirely dependent on the Zn/Ti molar ratios. With Zn/Ti molar ratio of 2, 19.80% TiO2 rutile phase in TiO2-ZnTiO3 composite was obtained, giving highest catalytic activity for H2 production. Using 10% Ni supported TiO2-ZnTiO3, phenol conversion and H2 yield of 89.10% and 75.60%, respectively were attained, while it was only 44.60% and 63.32% with 10% Ni/TiO2 NPs. This was obviously due to strong metal-support interaction with higher Ni-dispersion. More importantly, CO yield with Ni/TiO2 was 9.68%, decreased to 6.49% using 10% Ni/TiO2-ZnTiO3 perovskite composite, resulting in lower CO/CO2 ratio and trivial coke formation. Besides, Ni/TiO2-ZnTiO3 composite gave stability for more than 50 h without obvious deactivation, while it was only 6 h over Ni/TiO2 NPs. The effect of operating parameters reveals that reaction temperature 700 °C, catalyst loading 0.3 g and phenol/water ratio 5/95 wt% gave the highest catalyst activity. Besides, activity was also enhanced with increasing GHSV (mL.g−1.h−1), which confirms external mass transfer limitation. In conclusion, strong metal-supports interactions in Ni/TiO2-ZnTiO3 composite provide higher Ni-dispersion for stimulating catalytic activity and can be considered as a promising material for hydrogen production applications. Elsevier Ltd 2019-11 Article PeerReviewed Baamran, Khaled Saeed and Muhammad Tahir, Muhammad Tahir (2019) Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Conversion and Management, 200 . p. 11206. ISSN 0196-8904 http://dx.doi.org/10.1016/j.enconman.2019.112064 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Baamran, Khaled Saeed Muhammad Tahir, Muhammad Tahir Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
description |
4Highly reducible Ni-dispersed TiO2-ZnTiO3 perovskite nanocomposite with different anatase/rutile contents of TiO2 for enhanced phenol steam reforming (PSR) towards selective H2 production has been investigated. In-situ growth of TiO2 nanoparticles (NPs) over ZnTiO3 cubic perovskite was obtained through hydrothermal assisted impregnation method. TiO2-ZnTiO3 composite performance was entirely dependent on the Zn/Ti molar ratios. With Zn/Ti molar ratio of 2, 19.80% TiO2 rutile phase in TiO2-ZnTiO3 composite was obtained, giving highest catalytic activity for H2 production. Using 10% Ni supported TiO2-ZnTiO3, phenol conversion and H2 yield of 89.10% and 75.60%, respectively were attained, while it was only 44.60% and 63.32% with 10% Ni/TiO2 NPs. This was obviously due to strong metal-support interaction with higher Ni-dispersion. More importantly, CO yield with Ni/TiO2 was 9.68%, decreased to 6.49% using 10% Ni/TiO2-ZnTiO3 perovskite composite, resulting in lower CO/CO2 ratio and trivial coke formation. Besides, Ni/TiO2-ZnTiO3 composite gave stability for more than 50 h without obvious deactivation, while it was only 6 h over Ni/TiO2 NPs. The effect of operating parameters reveals that reaction temperature 700 °C, catalyst loading 0.3 g and phenol/water ratio 5/95 wt% gave the highest catalyst activity. Besides, activity was also enhanced with increasing GHSV (mL.g−1.h−1), which confirms external mass transfer limitation. In conclusion, strong metal-supports interactions in Ni/TiO2-ZnTiO3 composite provide higher Ni-dispersion for stimulating catalytic activity and can be considered as a promising material for hydrogen production applications. |
format |
Article |
author |
Baamran, Khaled Saeed Muhammad Tahir, Muhammad Tahir |
author_facet |
Baamran, Khaled Saeed Muhammad Tahir, Muhammad Tahir |
author_sort |
Baamran, Khaled Saeed |
title |
Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
title_short |
Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
title_full |
Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
title_fullStr |
Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
title_full_unstemmed |
Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming |
title_sort |
ni-embedded tio2-zntio3 reducible perovskite composite with synergistic effect of metal/support towards enhanced h2 production via phenol steam reforming |
publisher |
Elsevier Ltd |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/88710/ http://dx.doi.org/10.1016/j.enconman.2019.112064 |
_version_ |
1687393609653944320 |