Performance comparison of svm and ann for aerobic granular sludge

o comply with growing demand for high effluent quality of Domestic Wastewater Treatment Plant (WWTP), a simple and reliable prediction model is thus needed. The wastewater treatment technology considered in this paper is an Aerobic Granular Sludge (AGS). The AGS systems are fundamentally complex due...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Yasmin, N. S. A., Wahab, N. A., Anuar, A. N., Bob, M.
التنسيق: مقال
منشور في: Institute of Advanced Engineering and Science 2019
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/89521/
http://www.dx.doi.org/10.11591/eei.v8i4.1605
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Teknologi Malaysia
الوصف
الملخص:o comply with growing demand for high effluent quality of Domestic Wastewater Treatment Plant (WWTP), a simple and reliable prediction model is thus needed. The wastewater treatment technology considered in this paper is an Aerobic Granular Sludge (AGS). The AGS systems are fundamentally complex due to uncertainty and non-linearity of the system makes it hard to predict. This paper presents model predictions and optimization as a tool in predicting the performance of the AGS. The input-output data used in model prediction are (COD, TN, TP, AN, and MLSS). After feature analysis, the prediction of the models using Support Vector Machine (SVM) and Feed-Forward Neural Network (FFNN) are developed and compared. The simulation of the model uses the experimental data obtained from Sequencing Batch Reactor under hot temperature of 50˚C. The simulation results indicated that the SVM is preferable to FFNN and it can provide a useful tool in predicting the effluent quality of WWTP.