The exterior square of a Bieberbach group with quaternion point group of order eight

A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical repr...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad, S. A., Sarmin, N. H., Mat Hassim, H. I.
Format: Article
Language:English
Published: Akademi Sains Malaysia 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf
http://eprints.utm.my/id/eprint/90039/
http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23)
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.90039
record_format eprints
spelling my.utm.900392021-03-31T05:04:09Z http://eprints.utm.my/id/eprint/90039/ The exterior square of a Bieberbach group with quaternion point group of order eight Mohammad, S. A. Sarmin, N. H. Mat Hassim, H. I. QA75 Electronic computers. Computer science A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical representation is the exterior square. Mathematical method from representation theory is used to find the exterior square of this group. The exterior square of this group is found to be nonabelian. Akademi Sains Malaysia 2020 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf Mohammad, S. A. and Sarmin, N. H. and Mat Hassim, H. I. (2020) The exterior square of a Bieberbach group with quaternion point group of order eight. ASM Science Journal, 13 . p. 7. ISSN 1823-6782 http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23)
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Mohammad, S. A.
Sarmin, N. H.
Mat Hassim, H. I.
The exterior square of a Bieberbach group with quaternion point group of order eight
description A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical representation is the exterior square. Mathematical method from representation theory is used to find the exterior square of this group. The exterior square of this group is found to be nonabelian.
format Article
author Mohammad, S. A.
Sarmin, N. H.
Mat Hassim, H. I.
author_facet Mohammad, S. A.
Sarmin, N. H.
Mat Hassim, H. I.
author_sort Mohammad, S. A.
title The exterior square of a Bieberbach group with quaternion point group of order eight
title_short The exterior square of a Bieberbach group with quaternion point group of order eight
title_full The exterior square of a Bieberbach group with quaternion point group of order eight
title_fullStr The exterior square of a Bieberbach group with quaternion point group of order eight
title_full_unstemmed The exterior square of a Bieberbach group with quaternion point group of order eight
title_sort exterior square of a bieberbach group with quaternion point group of order eight
publisher Akademi Sains Malaysia
publishDate 2020
url http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf
http://eprints.utm.my/id/eprint/90039/
http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23)
_version_ 1696976252633612288