The exterior square of a Bieberbach group with quaternion point group of order eight
A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical repr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Akademi Sains Malaysia
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf http://eprints.utm.my/id/eprint/90039/ http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23) |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.90039 |
---|---|
record_format |
eprints |
spelling |
my.utm.900392021-03-31T05:04:09Z http://eprints.utm.my/id/eprint/90039/ The exterior square of a Bieberbach group with quaternion point group of order eight Mohammad, S. A. Sarmin, N. H. Mat Hassim, H. I. QA75 Electronic computers. Computer science A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical representation is the exterior square. Mathematical method from representation theory is used to find the exterior square of this group. The exterior square of this group is found to be nonabelian. Akademi Sains Malaysia 2020 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf Mohammad, S. A. and Sarmin, N. H. and Mat Hassim, H. I. (2020) The exterior square of a Bieberbach group with quaternion point group of order eight. ASM Science Journal, 13 . p. 7. ISSN 1823-6782 http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23) |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Mohammad, S. A. Sarmin, N. H. Mat Hassim, H. I. The exterior square of a Bieberbach group with quaternion point group of order eight |
description |
A Bieberbach group is defined to be a torsion free crystallographic group which is an extension of a free abelian lattice group by a finite point group. This paper aims to determine a mathematical representation of a Bieberbach group with quaternion point group of order eight. Such mathematical representation is the exterior square. Mathematical method from representation theory is used to find the exterior square of this group. The exterior square of this group is found to be nonabelian. |
format |
Article |
author |
Mohammad, S. A. Sarmin, N. H. Mat Hassim, H. I. |
author_facet |
Mohammad, S. A. Sarmin, N. H. Mat Hassim, H. I. |
author_sort |
Mohammad, S. A. |
title |
The exterior square of a Bieberbach group with quaternion point group of order eight |
title_short |
The exterior square of a Bieberbach group with quaternion point group of order eight |
title_full |
The exterior square of a Bieberbach group with quaternion point group of order eight |
title_fullStr |
The exterior square of a Bieberbach group with quaternion point group of order eight |
title_full_unstemmed |
The exterior square of a Bieberbach group with quaternion point group of order eight |
title_sort |
exterior square of a bieberbach group with quaternion point group of order eight |
publisher |
Akademi Sains Malaysia |
publishDate |
2020 |
url |
http://eprints.utm.my/id/eprint/90039/1/NorHanizaSarmin2020_TheExteriorSquareofaBieberbachGroup.pdf http://eprints.utm.my/id/eprint/90039/ http://dx.doi.org/10.32802/asmscj.2020.sm26(1.23) |
_version_ |
1696976252633612288 |