Performance improvement of asphalt concretes using steel slag as a replacement material
The increased proportion of traffic volumes on roads is often the cause of distress to the pavement structure. The use of strong and durable steel slag (S) as an aggregate material in asphalt concrete can enhance the load-bearing capacity while at the same time conserving natural resources, resultin...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
American Society of Civil Engineers (ASCE)
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/90682/ http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0003306 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.90682 |
---|---|
record_format |
eprints |
spelling |
my.utm.906822021-04-30T14:48:29Z http://eprints.utm.my/id/eprint/90682/ Performance improvement of asphalt concretes using steel slag as a replacement material Hasita, Saowarot Rachan, Runglawan Suddeepong, Apichat Horpibulsuk, Suksun Arulrajah, Arul Mohammadinia, Alireza Nazir, Ramli TA Engineering (General). Civil engineering (General) The increased proportion of traffic volumes on roads is often the cause of distress to the pavement structure. The use of strong and durable steel slag (S) as an aggregate material in asphalt concrete can enhance the load-bearing capacity while at the same time conserving natural resources, resulting in a sustainable asphalt pavement system. This research evaluated the feasibility of using S to replace natural limestone (L) at various aggregate sizes in asphalt concrete. The measured performance of the L-S asphalt concretes was compared with that of L asphalt concretes and granite (G) asphalt concretes. Two types of asphalt cements, Penetration Grade AC60/70 and polymer-modified asphalt (PMA), were utilized in this research project. The mix proportions were prepared by separating each original aggregate (S, L, and G) into four bins, Bin 1 (<4.75 mm), Bin 2 (<12.50 mm), Bin 3 (<19.00 mm), and Bin 4 (<25.00 mm), and trial mixing them together. Five types of aggregate included L:L:L:L, L:G:G:G, L:S:S:S, L:L:S:S, and L:L:L:S, where the first, second, third, and fourth letters denote the types of aggregates in Bins 1-4, respectively. The asphalt concretes were prepared at 4% air voids using the Marshall compaction method. The performance tests included indirect tensile, fatigue life, resilient modulus, dynamic creep, and wheel tracking tests. S was found to improve the Marshall stability properties of the asphalt concrete by a maximum of 50%. The fatigue life, resilient modulus, and rut depth resistance of the L:S:S:S-AC60/70 were found to be 1.6, 1.4, and 1.4 times higher than that of L:L:L:L-AC60/70, respectively. The fatigue life and resilient modulus values of the L:S:S:S-AC60/70 concrete were found to be close to those of L:L:L:L-PMA concrete. The performance of L:S:S:S-AC60/70 concrete was found to be comparable to that of the costly L:L:L:L-PMA concrete, and had a longer service life than L:L:L:L-AC60/70 concrete with the same thickness. The research outcomes of this study will promote the use of S as a sustainable aggregate for pavement concrete construction. American Society of Civil Engineers (ASCE) 2020-08 Article PeerReviewed Hasita, Saowarot and Rachan, Runglawan and Suddeepong, Apichat and Horpibulsuk, Suksun and Arulrajah, Arul and Mohammadinia, Alireza and Nazir, Ramli (2020) Performance improvement of asphalt concretes using steel slag as a replacement material. Journal of Materials in Civil Engineering, 32 (8). 0003306-0003306. ISSN 0899-1561 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0003306 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Hasita, Saowarot Rachan, Runglawan Suddeepong, Apichat Horpibulsuk, Suksun Arulrajah, Arul Mohammadinia, Alireza Nazir, Ramli Performance improvement of asphalt concretes using steel slag as a replacement material |
description |
The increased proportion of traffic volumes on roads is often the cause of distress to the pavement structure. The use of strong and durable steel slag (S) as an aggregate material in asphalt concrete can enhance the load-bearing capacity while at the same time conserving natural resources, resulting in a sustainable asphalt pavement system. This research evaluated the feasibility of using S to replace natural limestone (L) at various aggregate sizes in asphalt concrete. The measured performance of the L-S asphalt concretes was compared with that of L asphalt concretes and granite (G) asphalt concretes. Two types of asphalt cements, Penetration Grade AC60/70 and polymer-modified asphalt (PMA), were utilized in this research project. The mix proportions were prepared by separating each original aggregate (S, L, and G) into four bins, Bin 1 (<4.75 mm), Bin 2 (<12.50 mm), Bin 3 (<19.00 mm), and Bin 4 (<25.00 mm), and trial mixing them together. Five types of aggregate included L:L:L:L, L:G:G:G, L:S:S:S, L:L:S:S, and L:L:L:S, where the first, second, third, and fourth letters denote the types of aggregates in Bins 1-4, respectively. The asphalt concretes were prepared at 4% air voids using the Marshall compaction method. The performance tests included indirect tensile, fatigue life, resilient modulus, dynamic creep, and wheel tracking tests. S was found to improve the Marshall stability properties of the asphalt concrete by a maximum of 50%. The fatigue life, resilient modulus, and rut depth resistance of the L:S:S:S-AC60/70 were found to be 1.6, 1.4, and 1.4 times higher than that of L:L:L:L-AC60/70, respectively. The fatigue life and resilient modulus values of the L:S:S:S-AC60/70 concrete were found to be close to those of L:L:L:L-PMA concrete. The performance of L:S:S:S-AC60/70 concrete was found to be comparable to that of the costly L:L:L:L-PMA concrete, and had a longer service life than L:L:L:L-AC60/70 concrete with the same thickness. The research outcomes of this study will promote the use of S as a sustainable aggregate for pavement concrete construction. |
format |
Article |
author |
Hasita, Saowarot Rachan, Runglawan Suddeepong, Apichat Horpibulsuk, Suksun Arulrajah, Arul Mohammadinia, Alireza Nazir, Ramli |
author_facet |
Hasita, Saowarot Rachan, Runglawan Suddeepong, Apichat Horpibulsuk, Suksun Arulrajah, Arul Mohammadinia, Alireza Nazir, Ramli |
author_sort |
Hasita, Saowarot |
title |
Performance improvement of asphalt concretes using steel slag as a replacement material |
title_short |
Performance improvement of asphalt concretes using steel slag as a replacement material |
title_full |
Performance improvement of asphalt concretes using steel slag as a replacement material |
title_fullStr |
Performance improvement of asphalt concretes using steel slag as a replacement material |
title_full_unstemmed |
Performance improvement of asphalt concretes using steel slag as a replacement material |
title_sort |
performance improvement of asphalt concretes using steel slag as a replacement material |
publisher |
American Society of Civil Engineers (ASCE) |
publishDate |
2020 |
url |
http://eprints.utm.my/id/eprint/90682/ http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0003306 |
_version_ |
1698696970467540992 |