Numerical conformal mapping for exterior regions via the kerzman-stein kernel
A simple numerical method is described for computing a conformal map from a domain exterior to a smooth Jordan curve in the complex plane onto the exterior of the unit disk. The numerical method is based on a boundary integral equation similar to the Kerzman-Stein integral equation for interior mapp...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Rocky Mountain Mathematics Consortium, Rocky Mountain Mathematics Consortium
1998
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/9093/1/AHMMURID1998_NumericalConformalMappingForExterior.pdf http://eprints.utm.my/id/eprint/9093/ http://rmmc.eas.asu.edu/jie/jie.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.9093 |
---|---|
record_format |
eprints |
spelling |
my.utm.90932010-10-14T04:10:54Z http://eprints.utm.my/id/eprint/9093/ Numerical conformal mapping for exterior regions via the kerzman-stein kernel Murid, A. H. M. Nashed, M. Z. Razali, M. R. M. QA Mathematics A simple numerical method is described for computing a conformal map from a domain exterior to a smooth Jordan curve in the complex plane onto the exterior of the unit disk. The numerical method is based on a boundary integral equation similar to the Kerzman-Stein integral equation for interior mappings. Typical examples show that numerical results of high accuracy can be obtained provided that the boundaries are smooth The Rocky Mountain Mathematics Consortium, Rocky Mountain Mathematics Consortium 1998-03-15 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/9093/1/AHMMURID1998_NumericalConformalMappingForExterior.pdf Murid, A. H. M. and Nashed, M. Z. and Razali, M. R. M. (1998) Numerical conformal mapping for exterior regions via the kerzman-stein kernel. Journal of Integral Equations And Applications, 10 (4). pp. 517-532. ISSN 0897-3962 http://rmmc.eas.asu.edu/jie/jie.html doi:10.1216/jiea/1181074250 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Murid, A. H. M. Nashed, M. Z. Razali, M. R. M. Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
description |
A simple numerical method is described for computing a conformal map from a domain exterior to a smooth Jordan curve in the complex plane onto the exterior of the unit disk. The numerical method is based on a boundary integral equation similar to the Kerzman-Stein integral equation for interior mappings. Typical examples show that numerical results of high accuracy can be obtained provided that the boundaries are smooth |
format |
Article |
author |
Murid, A. H. M. Nashed, M. Z. Razali, M. R. M. |
author_facet |
Murid, A. H. M. Nashed, M. Z. Razali, M. R. M. |
author_sort |
Murid, A. H. M. |
title |
Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
title_short |
Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
title_full |
Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
title_fullStr |
Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
title_full_unstemmed |
Numerical conformal mapping for exterior regions via the kerzman-stein kernel |
title_sort |
numerical conformal mapping for exterior regions via the kerzman-stein kernel |
publisher |
The Rocky Mountain Mathematics Consortium, Rocky Mountain Mathematics Consortium |
publishDate |
1998 |
url |
http://eprints.utm.my/id/eprint/9093/1/AHMMURID1998_NumericalConformalMappingForExterior.pdf http://eprints.utm.my/id/eprint/9093/ http://rmmc.eas.asu.edu/jie/jie.html |
_version_ |
1643645117077127168 |