Big data tasks execution time analysis using machine learning techniques
Big data and its analysis are in the focus of current era. The volume of data production is tremendous and a significant part of delivered data is not utilized because of the limited assets to store and process them efficiently. The world acclaimed platform that can efficiently deal with the giganti...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/91088/1/AishaShabbir2019_BigDataTasksExecutionTime.pdf http://eprints.utm.my/id/eprint/91088/ http://www.ieomsociety.org/ieom2019/papers/665.pdf. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.91088 |
---|---|
record_format |
eprints |
spelling |
my.utm.910882021-05-31T13:21:28Z http://eprints.utm.my/id/eprint/91088/ Big data tasks execution time analysis using machine learning techniques Shabbir, A. Abu Bakar, K. Radzi, R. Z. R. M. Siraj, M. QA75 Electronic computers. Computer science Big data and its analysis are in the focus of current era. The volume of data production is tremendous and a significant part of delivered data is not utilized because of the limited assets to store and process them efficiently. The world acclaimed platform that can efficiently deal with the gigantic amount of data in a cost effective manner is Hadoop MapReduce. In order to effectively utilize any computational platform, information about the components affecting its performance is necessary. Similarly, Hadoop MapReduce's performance can be enhanced by identifying those factors that can affect its performance. Some researchers provided some schemes for improving total task completion time of big data tasks on Hadoop MapReduce by suitable selection and scheduling of processing units i.e. mappers. However, reducers are still underexplored for its effect on the total execution time. This paper aimed at evaluation of reducer's impact on total execution time of big data tasks on Hadoop MapReduce by employing machine learning techniques. The evaluation has been carried out both analytically and experimentally by changing different number of reducers across various types and length of tasks. The results clearly depicts the dependence of total MapReduce task execution time on the number of reducers. 2019 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/91088/1/AishaShabbir2019_BigDataTasksExecutionTime.pdf Shabbir, A. and Abu Bakar, K. and Radzi, R. Z. R. M. and Siraj, M. (2019) Big data tasks execution time analysis using machine learning techniques. In: 9th International Conference on Industrial Engineering and Operations Management, IEOM 2019, 5-7 March 2019, JW Marriott Hotel Bangkok, Thailand. http://www.ieomsociety.org/ieom2019/papers/665.pdf. |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Shabbir, A. Abu Bakar, K. Radzi, R. Z. R. M. Siraj, M. Big data tasks execution time analysis using machine learning techniques |
description |
Big data and its analysis are in the focus of current era. The volume of data production is tremendous and a significant part of delivered data is not utilized because of the limited assets to store and process them efficiently. The world acclaimed platform that can efficiently deal with the gigantic amount of data in a cost effective manner is Hadoop MapReduce. In order to effectively utilize any computational platform, information about the components affecting its performance is necessary. Similarly, Hadoop MapReduce's performance can be enhanced by identifying those factors that can affect its performance. Some researchers provided some schemes for improving total task completion time of big data tasks on Hadoop MapReduce by suitable selection and scheduling of processing units i.e. mappers. However, reducers are still underexplored for its effect on the total execution time. This paper aimed at evaluation of reducer's impact on total execution time of big data tasks on Hadoop MapReduce by employing machine learning techniques. The evaluation has been carried out both analytically and experimentally by changing different number of reducers across various types and length of tasks. The results clearly depicts the dependence of total MapReduce task execution time on the number of reducers. |
format |
Conference or Workshop Item |
author |
Shabbir, A. Abu Bakar, K. Radzi, R. Z. R. M. Siraj, M. |
author_facet |
Shabbir, A. Abu Bakar, K. Radzi, R. Z. R. M. Siraj, M. |
author_sort |
Shabbir, A. |
title |
Big data tasks execution time analysis using machine learning techniques |
title_short |
Big data tasks execution time analysis using machine learning techniques |
title_full |
Big data tasks execution time analysis using machine learning techniques |
title_fullStr |
Big data tasks execution time analysis using machine learning techniques |
title_full_unstemmed |
Big data tasks execution time analysis using machine learning techniques |
title_sort |
big data tasks execution time analysis using machine learning techniques |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/91088/1/AishaShabbir2019_BigDataTasksExecutionTime.pdf http://eprints.utm.my/id/eprint/91088/ http://www.ieomsociety.org/ieom2019/papers/665.pdf. |
_version_ |
1702169643597168640 |