Assessment of the RACPC performance under diffuse radiation for use in BIPV system
In the last four decades there has been a significant increase in solar photovoltaic (PV) capacity, which makes solar one of the most promising renewable energy sources. Following this trend, solar power would become the world's largest source of electricity by 2050. Building Integrated Photovo...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/91417/1/NurulAiniBani2020_AssessmentoftheRACPCPerformance.pdf http://eprints.utm.my/id/eprint/91417/ http://dx.doi.org/10.3390/app10103552 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | In the last four decades there has been a significant increase in solar photovoltaic (PV) capacity, which makes solar one of the most promising renewable energy sources. Following this trend, solar power would become the world's largest source of electricity by 2050. Building Integrated Photovoltaic (BIPV) systems, in which conventional materials can be replaced with PV panels that become an integral part of the building, can be enhanced with concentrating photovoltaic (CPV) systems. In order to increase the cost efficiency of a BIPV system, an optical concentrator can be used to replace expensive PV material with a lower cost option, whilst increasing the electrical output through the concentration of solar power. A concentrator called rotationally asymmetrical compound parabolic concentrator (RACPC) was analysed in this work under diffuse light conditions. Software simulations and experimental work were carried out to determine the optical concentration gain of the concentrator. Results from this work show that, under diffuse light, the RACPC has an optical concentration gain of 2.12. The experimental work showed a value of 2.20, which confirms the results with only a 3.8% difference. |
---|