Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient

Black mulberry fruit contains high level of anthocyanins and this compound is known for its beneficial health properties. This fruit is easily perishable and thus, it must be transformed into powder form to preserve its health benefits. The project consists of three objectives. First, to optimise th...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad, Farhani
Format: Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/92006/1/farhaniaAhmadMSChE2020.pdf.pdf
http://eprints.utm.my/id/eprint/92006/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:139031
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.92006
record_format eprints
spelling my.utm.920062021-08-30T04:17:27Z http://eprints.utm.my/id/eprint/92006/ Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient Ahmad, Farhani TP Chemical technology Black mulberry fruit contains high level of anthocyanins and this compound is known for its beneficial health properties. This fruit is easily perishable and thus, it must be transformed into powder form to preserve its health benefits. The project consists of three objectives. First, to optimise the processes of microwave-assisted extraction, secondly to optimize microwave-assisted encapsulation of black mulberry extract and thirdly to evaluate the storage stability of the encapsulated black mulberry extract and analyse its anti-diabetic property. To obtain the optimised conditions, a response surface methodology was applied. The factors studied for extraction were microwave power (200 – 800 W), extraction time (5 - 15 min), and solid to liquid ratio (0.1 - 1.0 g/ml). The optimised extraction condition was at power of 475.16 W, time of 10.73 min and solid to liquid ratio of 0.59 g/ml. The total anthocyanin content (TAC), 2,2 diphenyl, 1-picrylhydrazyl (DPPH) inhibition and ferric reducing antioxidant properties (FRAP) obtained at this optimized condition were 21.75 mg/g dry basis, 92.4 % inhibition and 0.49 mg Trolox/ml, respectively. For microwave-assisted encapsulation optimisation, the factors studied were the core to wall ratio (0.1 - 0.3 ml/ml), encapsulation time (2 - 4 min) and microwave power (450 - 640 W). Based on the results from the analysis, the optimized encapsulation condition found to be at core to wall ratio of 0.19 ml/ml, power at 450 W and time at 3 min. Under this optimized encapsulation condition, the encapsulated black mulberry extract contained TAC of 23.02 mg/g, with encapsulation efficiency (EE) of 90.08 %, DPPH inhibition of 85.58 %, FRAP of 0.4 mg Trolox/ml and moisture content of 4.31 %. From storage stability study, the best storage condition was at 4 °C where TAC, DPPH and FRAP experienced the lowest degradation (k = 0.0033, 0.0011, 0.0059 mg/day) and highest half-life (t1/2 = 201, 230, 117..5 days). In addition, this study demonstrated that the encapsulated black mulberry extract was capable of inhibiting alpha-glucosidase enzyme and thus, it can be used for preventing or treating diabetes. In conclusion, the results of this study show the potential of black mulberry fruit extract as a functional ingredient. 2020 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/92006/1/farhaniaAhmadMSChE2020.pdf.pdf Ahmad, Farhani (2020) Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient. Masters thesis, Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:139031
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Ahmad, Farhani
Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
description Black mulberry fruit contains high level of anthocyanins and this compound is known for its beneficial health properties. This fruit is easily perishable and thus, it must be transformed into powder form to preserve its health benefits. The project consists of three objectives. First, to optimise the processes of microwave-assisted extraction, secondly to optimize microwave-assisted encapsulation of black mulberry extract and thirdly to evaluate the storage stability of the encapsulated black mulberry extract and analyse its anti-diabetic property. To obtain the optimised conditions, a response surface methodology was applied. The factors studied for extraction were microwave power (200 – 800 W), extraction time (5 - 15 min), and solid to liquid ratio (0.1 - 1.0 g/ml). The optimised extraction condition was at power of 475.16 W, time of 10.73 min and solid to liquid ratio of 0.59 g/ml. The total anthocyanin content (TAC), 2,2 diphenyl, 1-picrylhydrazyl (DPPH) inhibition and ferric reducing antioxidant properties (FRAP) obtained at this optimized condition were 21.75 mg/g dry basis, 92.4 % inhibition and 0.49 mg Trolox/ml, respectively. For microwave-assisted encapsulation optimisation, the factors studied were the core to wall ratio (0.1 - 0.3 ml/ml), encapsulation time (2 - 4 min) and microwave power (450 - 640 W). Based on the results from the analysis, the optimized encapsulation condition found to be at core to wall ratio of 0.19 ml/ml, power at 450 W and time at 3 min. Under this optimized encapsulation condition, the encapsulated black mulberry extract contained TAC of 23.02 mg/g, with encapsulation efficiency (EE) of 90.08 %, DPPH inhibition of 85.58 %, FRAP of 0.4 mg Trolox/ml and moisture content of 4.31 %. From storage stability study, the best storage condition was at 4 °C where TAC, DPPH and FRAP experienced the lowest degradation (k = 0.0033, 0.0011, 0.0059 mg/day) and highest half-life (t1/2 = 201, 230, 117..5 days). In addition, this study demonstrated that the encapsulated black mulberry extract was capable of inhibiting alpha-glucosidase enzyme and thus, it can be used for preventing or treating diabetes. In conclusion, the results of this study show the potential of black mulberry fruit extract as a functional ingredient.
format Thesis
author Ahmad, Farhani
author_facet Ahmad, Farhani
author_sort Ahmad, Farhani
title Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
title_short Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
title_full Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
title_fullStr Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
title_full_unstemmed Optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
title_sort optimization of microwave-assisted extraction and encapsulation of black mulberry rich anthocyanin extract as functional ingredient
publishDate 2020
url http://eprints.utm.my/id/eprint/92006/1/farhaniaAhmadMSChE2020.pdf.pdf
http://eprints.utm.my/id/eprint/92006/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:139031
_version_ 1709667371461902336