Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield

The CO2 Water Alternating Gas (CO2-WAG) injection method, allows the oil to first expand and become better able to flow because of the CO2, and then the water increases the pressure in the reservoir to flush this newly freed oil to production wells. This study is in Sarolangun District, Jambi Provin...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdurrahman, M. D., Hidayat, F., Husna, U. Z., Arsad, A.
Format: Article
Published: Elsevier Ltd. 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/93701/
http://dx.doi.org/10.1016/j.matpr.2020.04.495
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.93701
record_format eprints
spelling my.utm.937012021-12-31T08:28:28Z http://eprints.utm.my/id/eprint/93701/ Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield Abdurrahman, M. D. Hidayat, F. Husna, U. Z. Arsad, A. TP Chemical technology The CO2 Water Alternating Gas (CO2-WAG) injection method, allows the oil to first expand and become better able to flow because of the CO2, and then the water increases the pressure in the reservoir to flush this newly freed oil to production wells. This study is in Sarolangun District, Jambi Province which is prospect of CO2 injection tertiary recovery project due to its abundant CO2 reserve. The success of CO2-WAG injection can be determined by investigating ratios between CO2 and water. The goal of this study is to determine optimum CO2-WAG injection ratio in Sumatera Light Oilfield. This study is done through a numerical simulation of immiscible CO2-WAG which is conducted under three scenarios of ratio using both CMG WINPROP and GEM simulator. The CO2/water ratios are varied from 1:1, 2:1 and 1:2. The study results show that the CO2/water 1:2 is the best CO2-WAG injection ratio that gives highest additional oil recovery factor of 35.24%. Additional recovery factor given by CO2/water ratio 2:1 and 1:1 is 1.49% and 19.52% respectively. Based on this study, the effect of CO2-WAG ratio to oil productivity is depending of amount of water injected. Lower initial oil viscosity lead to an insignificant effect of CO2. Proper CO2-WAG injection ratio will give an optimum oil recovery. This works will have a great use in the CO2-Enhanced Oil Recovery (EOR) application. Elsevier Ltd. 2020 Article PeerReviewed Abdurrahman, M. D. and Hidayat, F. and Husna, U. Z. and Arsad, A. (2020) Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield. Materials Today: Proceedings, 39 (2). pp. 970-974. ISSN 2214-7853 http://dx.doi.org/10.1016/j.matpr.2020.04.495 DOI: 10.1016/j.matpr.2020.04.495
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TP Chemical technology
spellingShingle TP Chemical technology
Abdurrahman, M. D.
Hidayat, F.
Husna, U. Z.
Arsad, A.
Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
description The CO2 Water Alternating Gas (CO2-WAG) injection method, allows the oil to first expand and become better able to flow because of the CO2, and then the water increases the pressure in the reservoir to flush this newly freed oil to production wells. This study is in Sarolangun District, Jambi Province which is prospect of CO2 injection tertiary recovery project due to its abundant CO2 reserve. The success of CO2-WAG injection can be determined by investigating ratios between CO2 and water. The goal of this study is to determine optimum CO2-WAG injection ratio in Sumatera Light Oilfield. This study is done through a numerical simulation of immiscible CO2-WAG which is conducted under three scenarios of ratio using both CMG WINPROP and GEM simulator. The CO2/water ratios are varied from 1:1, 2:1 and 1:2. The study results show that the CO2/water 1:2 is the best CO2-WAG injection ratio that gives highest additional oil recovery factor of 35.24%. Additional recovery factor given by CO2/water ratio 2:1 and 1:1 is 1.49% and 19.52% respectively. Based on this study, the effect of CO2-WAG ratio to oil productivity is depending of amount of water injected. Lower initial oil viscosity lead to an insignificant effect of CO2. Proper CO2-WAG injection ratio will give an optimum oil recovery. This works will have a great use in the CO2-Enhanced Oil Recovery (EOR) application.
format Article
author Abdurrahman, M. D.
Hidayat, F.
Husna, U. Z.
Arsad, A.
author_facet Abdurrahman, M. D.
Hidayat, F.
Husna, U. Z.
Arsad, A.
author_sort Abdurrahman, M. D.
title Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
title_short Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
title_full Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
title_fullStr Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
title_full_unstemmed Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield
title_sort determination of optimum co2 water alternating gas (co2-wag) ratio in sumatera light oilfield
publisher Elsevier Ltd.
publishDate 2020
url http://eprints.utm.my/id/eprint/93701/
http://dx.doi.org/10.1016/j.matpr.2020.04.495
_version_ 1720980112428498944