Abnormal behavior detection using sparse representations through sequential generalization of k-means

The potential capability to automatically detect and classify human behavior as either normal or abnormal events is an important aspect in intelligent monitoring/surveillance systems. This study presents a new high-performance framework for detecting behavioral abnormalities in video streams by util...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Dhamari, Ahlam, Sudirman, Rubita, Mahmood, Nasrul Humaimi
Format: Article
Language:English
Published: Turkiye Klinikleri 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/94025/1/AhlamAlDhamari2021_AbnormalBehaviorDetectionUsingSparse.pdf
http://eprints.utm.my/id/eprint/94025/
http://dx.doi.org/10.3906/ELK-1904-187
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.94025
record_format eprints
spelling my.utm.940252022-02-28T13:31:13Z http://eprints.utm.my/id/eprint/94025/ Abnormal behavior detection using sparse representations through sequential generalization of k-means Al-Dhamari, Ahlam Sudirman, Rubita Mahmood, Nasrul Humaimi TK Electrical engineering. Electronics Nuclear engineering The potential capability to automatically detect and classify human behavior as either normal or abnormal events is an important aspect in intelligent monitoring/surveillance systems. This study presents a new high-performance framework for detecting behavioral abnormalities in video streams by utilizing only the patterns for normal behaviors. In this paper, we used a hybrid descriptor, called a foreground optical flow energy (FGOFE), which makes use of two effective motion techniques in order to extract the most descriptive spatiotemporal features in video sequences. The FGOFE descriptor can effectively capture both weak and sudden incidents in a scene. The sequential generalization of k-means (SGK) algorithm was applied in this study to generate the dictionary set that can sparsely represent each signal; in addition, the orthogonal matching pursuit algorithm was utilized to recover high-dimensional sparse features when referring to a few numbers of noisy linear measurements. Using the SGK allows gaining a less complex and quicker implementation compared to other dictionary learning methods. We conducted comprehensive experiments to analyze and evaluate the ability of our framework in detecting abnormalities using several public benchmarks, which contain different abnormal samples and various contextual compositions. The experimental results show that the proposed framework achieved high detection accuracy (up to 95.33%) and low frame processing time (31 ms on average) compared to the relevant related work. Turkiye Klinikleri 2021-01 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/94025/1/AhlamAlDhamari2021_AbnormalBehaviorDetectionUsingSparse.pdf Al-Dhamari, Ahlam and Sudirman, Rubita and Mahmood, Nasrul Humaimi (2021) Abnormal behavior detection using sparse representations through sequential generalization of k-means. Turkish Journal of Electrical Engineering and Computer Sciences, 29 (1). pp. 152-168. ISSN 1300-0632 http://dx.doi.org/10.3906/ELK-1904-187 DOI:10.3906/ELK-1904-187
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Al-Dhamari, Ahlam
Sudirman, Rubita
Mahmood, Nasrul Humaimi
Abnormal behavior detection using sparse representations through sequential generalization of k-means
description The potential capability to automatically detect and classify human behavior as either normal or abnormal events is an important aspect in intelligent monitoring/surveillance systems. This study presents a new high-performance framework for detecting behavioral abnormalities in video streams by utilizing only the patterns for normal behaviors. In this paper, we used a hybrid descriptor, called a foreground optical flow energy (FGOFE), which makes use of two effective motion techniques in order to extract the most descriptive spatiotemporal features in video sequences. The FGOFE descriptor can effectively capture both weak and sudden incidents in a scene. The sequential generalization of k-means (SGK) algorithm was applied in this study to generate the dictionary set that can sparsely represent each signal; in addition, the orthogonal matching pursuit algorithm was utilized to recover high-dimensional sparse features when referring to a few numbers of noisy linear measurements. Using the SGK allows gaining a less complex and quicker implementation compared to other dictionary learning methods. We conducted comprehensive experiments to analyze and evaluate the ability of our framework in detecting abnormalities using several public benchmarks, which contain different abnormal samples and various contextual compositions. The experimental results show that the proposed framework achieved high detection accuracy (up to 95.33%) and low frame processing time (31 ms on average) compared to the relevant related work.
format Article
author Al-Dhamari, Ahlam
Sudirman, Rubita
Mahmood, Nasrul Humaimi
author_facet Al-Dhamari, Ahlam
Sudirman, Rubita
Mahmood, Nasrul Humaimi
author_sort Al-Dhamari, Ahlam
title Abnormal behavior detection using sparse representations through sequential generalization of k-means
title_short Abnormal behavior detection using sparse representations through sequential generalization of k-means
title_full Abnormal behavior detection using sparse representations through sequential generalization of k-means
title_fullStr Abnormal behavior detection using sparse representations through sequential generalization of k-means
title_full_unstemmed Abnormal behavior detection using sparse representations through sequential generalization of k-means
title_sort abnormal behavior detection using sparse representations through sequential generalization of k-means
publisher Turkiye Klinikleri
publishDate 2021
url http://eprints.utm.my/id/eprint/94025/1/AhlamAlDhamari2021_AbnormalBehaviorDetectionUsingSparse.pdf
http://eprints.utm.my/id/eprint/94025/
http://dx.doi.org/10.3906/ELK-1904-187
_version_ 1726791469836009472