Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems
Electricity demand forecasting remains a challenging issue for power system scheduling at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated power systems and electricity markets, which is commonly employed to predict the outcomes power failures. Thi...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/94846/1/ZainalSalam2021_IntelligentMachineLearning.pdf http://eprints.utm.my/id/eprint/94846/ http://dx.doi.org/10.1109/ACCESS.2021.3096918 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.94846 |
---|---|
record_format |
eprints |
spelling |
my.utm.948462022-04-29T21:54:39Z http://eprints.utm.my/id/eprint/94846/ Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems Mehedi, I. M. Bassi, H. Rawa, M. J. Ajour, M. Abusorrah, A. Vellingiri, M. T. Salam, Z. Abdullah, M. P. TK Electrical engineering. Electronics Nuclear engineering Electricity demand forecasting remains a challenging issue for power system scheduling at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated power systems and electricity markets, which is commonly employed to predict the outcomes power failures. This paper presents an intelligent machine learning with evolutionary algorithm based STLF model, called (IMLEA-STLF) for power systems which involves different stages of operations such as data decomposition, data preprocessing, feature selection, prediction, and parameter tuning. Wavelet transform (WT) is used for the decomposition of the time series and Oppositional Artificial Fish Swarm Optimization algorithm (OAFSA) based feature selection technique to elect an optimal set of features. In order to improvise the convergence rate of AFSA, oppositional based learning (OBL) concept is integrated into it. Then, the water wave optimization (WWO) with Elman neural networks (ENN) model is employed for the predictive process. Finally, inverse WT is applied and obtained the hourly load forecasting data. To validate the effective predictive outcome of the IMLEA-STLF model, an extensive set of simulations take place on benchmark dataset. The resultant values ensured the promising results of the IMLEA-STLF model over the other compared methods. Institute of Electrical and Electronics Engineers Inc. 2021 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/94846/1/ZainalSalam2021_IntelligentMachineLearning.pdf Mehedi, I. M. and Bassi, H. and Rawa, M. J. and Ajour, M. and Abusorrah, A. and Vellingiri, M. T. and Salam, Z. and Abdullah, M. P. (2021) Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems. IEEE Access, 9 . ISSN 2169-3536 http://dx.doi.org/10.1109/ACCESS.2021.3096918 DOI: 10.1109/ACCESS.2021.3096918 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Mehedi, I. M. Bassi, H. Rawa, M. J. Ajour, M. Abusorrah, A. Vellingiri, M. T. Salam, Z. Abdullah, M. P. Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
description |
Electricity demand forecasting remains a challenging issue for power system scheduling at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated power systems and electricity markets, which is commonly employed to predict the outcomes power failures. This paper presents an intelligent machine learning with evolutionary algorithm based STLF model, called (IMLEA-STLF) for power systems which involves different stages of operations such as data decomposition, data preprocessing, feature selection, prediction, and parameter tuning. Wavelet transform (WT) is used for the decomposition of the time series and Oppositional Artificial Fish Swarm Optimization algorithm (OAFSA) based feature selection technique to elect an optimal set of features. In order to improvise the convergence rate of AFSA, oppositional based learning (OBL) concept is integrated into it. Then, the water wave optimization (WWO) with Elman neural networks (ENN) model is employed for the predictive process. Finally, inverse WT is applied and obtained the hourly load forecasting data. To validate the effective predictive outcome of the IMLEA-STLF model, an extensive set of simulations take place on benchmark dataset. The resultant values ensured the promising results of the IMLEA-STLF model over the other compared methods. |
format |
Article |
author |
Mehedi, I. M. Bassi, H. Rawa, M. J. Ajour, M. Abusorrah, A. Vellingiri, M. T. Salam, Z. Abdullah, M. P. |
author_facet |
Mehedi, I. M. Bassi, H. Rawa, M. J. Ajour, M. Abusorrah, A. Vellingiri, M. T. Salam, Z. Abdullah, M. P. |
author_sort |
Mehedi, I. M. |
title |
Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
title_short |
Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
title_full |
Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
title_fullStr |
Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
title_full_unstemmed |
Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
title_sort |
intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/94846/1/ZainalSalam2021_IntelligentMachineLearning.pdf http://eprints.utm.my/id/eprint/94846/ http://dx.doi.org/10.1109/ACCESS.2021.3096918 |
_version_ |
1732945401280987136 |