Finite element analysis of external fixator for treating femur fracture: analysis on stainless steel and titanium as material of external fixator
An external fixator device is a medical implant used to keep fractured bones stabilized and in alignment. It consists of pins which are placed into the bone, extending outside the surface of the skin, and attached to a rigid external rod to keep it in place. The aim of this study is to investigate t...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/95384/1/NurnedilahMohammad2021_FiniteElementAnalysisofExternal.pdf http://eprints.utm.my/id/eprint/95384/ http://dx.doi.org/10.11113/MJFAS.V17N3.2104 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | An external fixator device is a medical implant used to keep fractured bones stabilized and in alignment. It consists of pins which are placed into the bone, extending outside the surface of the skin, and attached to a rigid external rod to keep it in place. The aim of this study is to investigate the most suitable material used for the external fixator. Firstly, the 3D model of two unilateral uniplanar external fixator with the properties of titanium and stainless steel were constructed at Solidworks software with all the other parameters set to constant. Meanwhile, CT images of the lower limb were used to reconstruct a 3D model of the femur fracture at Mimics Medical software. Positioning and meshing of both the external fixator and the femur done at 3- Matics Medical and export as Patran for simulation at Marc Mentat software. 375 N load was applied at the most proximal femur to simulate stance phase of a gait cycle. From the findings, external fixator by using stainless steel as material properties have lower maximum von Mises Stress (18.40 MPa) at the femur and (103.69 MPa) at the fixator compared to the titanium (32.38 MPa) at the femur and (182.93 MPa) at the fixator. The result shows a difference of 75% of maximum von Mises Stress at the femur and the external fixator. Configuration by using stainless steel displaced 1.15 mm at the femur and 1.01 mm at the fixator which almost double value of displacement for titanium material for both femur (2.35 mm) and external fixator (2.11 mm). In conclusion, stainless steel external fixators provide better stability when compared to titanium external fixators. |
---|