Deep neural network and whale optimization algorithm to assess flyrock induced by blasting

A wide variety of artificial intelligence methods have been utilized in the prediction of flyrock induced by blasting. This study focuses on developing a model based on deep neural network (DNN) which is an advanced version of artificial neural network (ANN) for the prediction of flyrock based on th...

Full description

Saved in:
Bibliographic Details
Main Authors: Gou, H., Zhou, J., Koopialipoor, M., Armaghani, D. J., Tahir, M. M.
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/95485/
http://dx.doi.org/10.1007/s00366-019-00816-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:A wide variety of artificial intelligence methods have been utilized in the prediction of flyrock induced by blasting. This study focuses on developing a model based on deep neural network (DNN) which is an advanced version of artificial neural network (ANN) for the prediction of flyrock based on the data obtained from the Ulu Thiram quarry that is located in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database, was also developed and then compared with the DNN model. Based on the obtained results [i.e. coefficient of determination (R2) = 0.9829 and 0.9781, root mean square error (RMSE) = 8.2690 and 9.1119 for DNN and R2 = 0.9093 and 0.8539, RMSE = 19.0795 and 25.05120 for ANN], a significant increase in predicting flyrock is achieved by developing this DNN predictive model. Then, the DNN model was selected as a function for optimizing flyrock by a powerful optimization technique namely whale optimization algorithm (WOA). The WOA was able to minimize the flyrock resulting from blasting and provide a suitable pattern for blasting operations in mines.