CO2 reforming of CH4 on mesoporous alumina-supported cobalt catalyst: Optimization of lanthana promoter loading
The impact of La2O3 promoter loading on alumina-supported cobalt catalysts was investigated in terms of physicochemical properties and catalytic performance for CO2 reforming of methane (CRM) at stoichiometric CH4/CO2 ratio and 1023 K. Both Co3O4 (with crystal size: 5.2–8.4 nm) and La2O3 nanoparticl...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Springer
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/95493/ http://dx.doi.org/10.1007/s11244-021-01428-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | The impact of La2O3 promoter loading on alumina-supported cobalt catalysts was investigated in terms of physicochemical properties and catalytic performance for CO2 reforming of methane (CRM) at stoichiometric CH4/CO2 ratio and 1023 K. Both Co3O4 (with crystal size: 5.2–8.4 nm) and La2O3 nanoparticles were finely dispersed on support surface. The promotional La2O3 effect could noticeably increase CH4 and CO2 conversions to 29.3% and 17.3%, correspondingly due to improved basic site concentration and decreasing crystallite size of active metal in association with promoter addition. 5%La loading was an optimal promoter content for reactant conversions as well as yield of H2 and CO. 5%La-10%Co/Al2O3 also exhibited the highest resistance to carbon deposition owing to the basic nature, redox feature and oxygen vacancy of La2O3 dopant. Notably, the H2/CO ratio obtained within 0.84–0.98 is preferable for Fischer-Tropsch reaction in downstream to yield liquid hydrocarbon fuels. |
---|