Performance evaluation of modified rubberized concrete exposed to aggressive environments
Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enh...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/95813/ http://dx.doi.org/10.3390/ma14081900 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.95813 |
---|---|
record_format |
eprints |
spelling |
my.utm.958132022-05-31T13:19:34Z http://eprints.utm.my/id/eprint/95813/ Performance evaluation of modified rubberized concrete exposed to aggressive environments Mhaya, Akram M. Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Zainal Abidin, Ahmad Razin Mohammad Ismil, Mohammad Ismil TA Engineering (General). Civil engineering (General) Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk. MDPI AG 2021 Article PeerReviewed Mhaya, Akram M. and Baghban, Mohammad Hajmohammadian and Faridmehr, Iman and Huseien, Ghasan Fahim and Zainal Abidin, Ahmad Razin and Mohammad Ismil, Mohammad Ismil (2021) Performance evaluation of modified rubberized concrete exposed to aggressive environments. Materials, 14 (8). p. 1900. ISSN 1996-1944 http://dx.doi.org/10.3390/ma14081900 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Mhaya, Akram M. Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Zainal Abidin, Ahmad Razin Mohammad Ismil, Mohammad Ismil Performance evaluation of modified rubberized concrete exposed to aggressive environments |
description |
Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk. |
format |
Article |
author |
Mhaya, Akram M. Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Zainal Abidin, Ahmad Razin Mohammad Ismil, Mohammad Ismil |
author_facet |
Mhaya, Akram M. Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Zainal Abidin, Ahmad Razin Mohammad Ismil, Mohammad Ismil |
author_sort |
Mhaya, Akram M. |
title |
Performance evaluation of modified rubberized concrete exposed to aggressive environments |
title_short |
Performance evaluation of modified rubberized concrete exposed to aggressive environments |
title_full |
Performance evaluation of modified rubberized concrete exposed to aggressive environments |
title_fullStr |
Performance evaluation of modified rubberized concrete exposed to aggressive environments |
title_full_unstemmed |
Performance evaluation of modified rubberized concrete exposed to aggressive environments |
title_sort |
performance evaluation of modified rubberized concrete exposed to aggressive environments |
publisher |
MDPI AG |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/95813/ http://dx.doi.org/10.3390/ma14081900 |
_version_ |
1735386850431860736 |