Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter
One of the most exciting and challenging problem is the control of induction machines (IMs). An advanced control strategy with a three-phase inverter to drive an induction motor (IM) is a conventional model predictive control (MPC). However, the use of a conventional MPC 3-phase inverter leads to th...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/96166/ http://dx.doi.org/10.1007/978-981-16-8129-5_23 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.96166 |
---|---|
record_format |
eprints |
spelling |
my.utm.961662022-07-04T07:45:50Z http://eprints.utm.my/id/eprint/96166/ Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter Abobaker, Abobaker K. Mohamad Nordin, Norjulia Ahmad Azli, Naziha Ayop, Razman Mohd. Subha, Nurul Adilla TK Electrical engineering. Electronics Nuclear engineering One of the most exciting and challenging problem is the control of induction machines (IMs). An advanced control strategy with a three-phase inverter to drive an induction motor (IM) is a conventional model predictive control (MPC). However, the use of a conventional MPC 3-phase inverter leads to the generation of extensive harmonic content due to a limited voltage vector, resulting in high ripples of torque and flux. Besides, the calculation of weighting factor by error is complex and so is the selection for three different objectives. Hence, this paper aims to propose simple technique with a multilevel cascaded high bridge inverter (5-level CHB) for predictive torque and flux control to drive IM with lower harmonic content in stator current without using the weighting factor to optimize the MPC cost function. Precisely in this method, the torque is being calculated using one cost function while the flux is being calculated using a decupled cost function. It is expected to improve steady-state performance, achieves a more effective performance, and decreases torque and flux ripples in terms of current distortion. 2021 Conference or Workshop Item PeerReviewed Abobaker, Abobaker K. and Mohamad Nordin, Norjulia and Ahmad Azli, Naziha and Ayop, Razman and Mohd. Subha, Nurul Adilla (2021) Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter. In: 11th International Conference on Robotics, Vision, Signal Processing and Power Applications, RoViSP 2021, 5 - 6 April 2021, Virtual, Online. http://dx.doi.org/10.1007/978-981-16-8129-5_23 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Abobaker, Abobaker K. Mohamad Nordin, Norjulia Ahmad Azli, Naziha Ayop, Razman Mohd. Subha, Nurul Adilla Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
description |
One of the most exciting and challenging problem is the control of induction machines (IMs). An advanced control strategy with a three-phase inverter to drive an induction motor (IM) is a conventional model predictive control (MPC). However, the use of a conventional MPC 3-phase inverter leads to the generation of extensive harmonic content due to a limited voltage vector, resulting in high ripples of torque and flux. Besides, the calculation of weighting factor by error is complex and so is the selection for three different objectives. Hence, this paper aims to propose simple technique with a multilevel cascaded high bridge inverter (5-level CHB) for predictive torque and flux control to drive IM with lower harmonic content in stator current without using the weighting factor to optimize the MPC cost function. Precisely in this method, the torque is being calculated using one cost function while the flux is being calculated using a decupled cost function. It is expected to improve steady-state performance, achieves a more effective performance, and decreases torque and flux ripples in terms of current distortion. |
format |
Conference or Workshop Item |
author |
Abobaker, Abobaker K. Mohamad Nordin, Norjulia Ahmad Azli, Naziha Ayop, Razman Mohd. Subha, Nurul Adilla |
author_facet |
Abobaker, Abobaker K. Mohamad Nordin, Norjulia Ahmad Azli, Naziha Ayop, Razman Mohd. Subha, Nurul Adilla |
author_sort |
Abobaker, Abobaker K. |
title |
Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
title_short |
Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
title_full |
Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
title_fullStr |
Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
title_full_unstemmed |
Model predictive control for induction motor Fed by 5-level cascaded H-bridge inverter |
title_sort |
model predictive control for induction motor fed by 5-level cascaded h-bridge inverter |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/96166/ http://dx.doi.org/10.1007/978-981-16-8129-5_23 |
_version_ |
1738510332135997440 |