Identification of sharp edge non-slender delta wing aerodynamic coefficient using neural network
Delta wing formed a vortical flow on its surface which produced higher lift compared to conventional wing. The vortical flow is complex and non-linear which requires more studies to understand its flow physics. However, conventional flow analysis (wind tunnel test and computational flow dynamic) com...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/96480/2/RoselinaSallehudin2021_IdentificationofSharpEdgeNonSlenderDeltaWing.pdf http://eprints.utm.my/id/eprint/96480/ http://dx.doi.org/10.1088/1742-6596/2129/1/012086 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | Delta wing formed a vortical flow on its surface which produced higher lift compared to conventional wing. The vortical flow is complex and non-linear which requires more studies to understand its flow physics. However, conventional flow analysis (wind tunnel test and computational flow dynamic) comes with several significant drawbacks. In recent times, application of neural network as alternative to conventional flow analysis has increased. This study is about utilization of Multi-Layer Perceptron (MLP) neural network to predict the coefficient of pressure (Cp) on a delta wing model. The physical model that was used is a sharp edge non-slender delta wing. The training data was taken from wind tunnel tests. 70% of data is used as training, 15% is used as validation and another 15% is used as test set. The wind tunnel test was done at angle of attack from 0°-18° with increment of 3°. The flow velocity was set at 25m/s which correspond to 800,000 Reynolds number. The inputs are angle of attack and location of pressure tube (y/cr) while the output is Cp. The MLP models were fitted with 3 different transfer functions (linear, sigmoid, and tanh) and trained with Lavenberg-Marquadt backpropagation algorithm. The results of the models were compared to determine the best performing model. Results show that large amount of data is required to produce accurate prediction model because the model suffer from condition called overfitting. |
---|