Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election

In 2019, citizens of Indonesia participated in the democratic process of electing a new president, vice president, and various legislative candidates for the country. The 2019 Indonesian presidential election was very tense in terms of the candidates' campaigns in cyberspace, especially on soci...

Full description

Saved in:
Bibliographic Details
Main Authors: Buntoro, Ghulam Asrofi, Arifin, Rizal, Syaifuddiin, Gus Nanang, Selamat, Ali, Krejcar, Ondrej, Fujita, Hamido
Format: Article
Language:English
Published: International Islamic University Malaysia-IIUM 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/97858/1/AliSelamat2021_ImplementationOfAMachineLearningAlgorithmForSentimentAnalysis.pdf
http://eprints.utm.my/id/eprint/97858/
http://dx.doi.org/10.31436/IIUMEJ.V22I1.1532
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.97858
record_format eprints
spelling my.utm.978582022-11-07T10:03:23Z http://eprints.utm.my/id/eprint/97858/ Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election Buntoro, Ghulam Asrofi Arifin, Rizal Syaifuddiin, Gus Nanang Selamat, Ali Krejcar, Ondrej Fujita, Hamido T Technology (General) In 2019, citizens of Indonesia participated in the democratic process of electing a new president, vice president, and various legislative candidates for the country. The 2019 Indonesian presidential election was very tense in terms of the candidates' campaigns in cyberspace, especially on social media sites such as Facebook, Twitter, Instagram, Google+, Tumblr, LinkedIn, etc. The Indonesian people used social media platforms to express their positive, neutral, and also negative opinions on the respective presidential candidates. The campaigning of respective social media users on their choice of candidates for regents, governors, and legislative positions up to presidential candidates was conducted via the Internet and online media. Therefore, the aim of this paper is to conduct sentiment analysis on the candidates in the 2019 Indonesia presidential election based on Twitter datasets. The study used datasets on the opinions expressed by the Indonesian people available on Twitter with the hashtags (#) containing “Jokowi and Prabowo.” We conducted data pre-processing using a selection of comments, data cleansing, text parsing, sentence normalization and tokenization based on the given text in the Indonesian language, determination of class attributes, and, finally, we classified the Twitter posts with the hashtags (#) using Naïve Bayes Classifier (NBC) and a Support Vector Machine (SVM) to achieve an optimal and maximum optimization accuracy. The study provides benefits in terms of helping the community to research opinions on Twitter that contain positive, neutral, or negative sentiments. Sentiment Analysis on the candidates in the 2019 Indonesian presidential election on Twitter using non-conventional processes resulted in cost, time, and effort savings. This research proved that the combination of the SVM machine learning algorithm and alphabetic tokenization produced the highest accuracy value of 79.02%. While the lowest accuracy value in this study was obtained with a combination of the NBC machine learning algorithm and N-gram tokenization with an accuracy value of 44.94%. International Islamic University Malaysia-IIUM 2021 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/97858/1/AliSelamat2021_ImplementationOfAMachineLearningAlgorithmForSentimentAnalysis.pdf Buntoro, Ghulam Asrofi and Arifin, Rizal and Syaifuddiin, Gus Nanang and Selamat, Ali and Krejcar, Ondrej and Fujita, Hamido (2021) Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election. IIUM Engineering Journal, 22 (1). pp. 78-92. ISSN 1511-788X http://dx.doi.org/10.31436/IIUMEJ.V22I1.1532 DOI : 10.31436/IIUMEJ.V22I1.1532
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Buntoro, Ghulam Asrofi
Arifin, Rizal
Syaifuddiin, Gus Nanang
Selamat, Ali
Krejcar, Ondrej
Fujita, Hamido
Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
description In 2019, citizens of Indonesia participated in the democratic process of electing a new president, vice president, and various legislative candidates for the country. The 2019 Indonesian presidential election was very tense in terms of the candidates' campaigns in cyberspace, especially on social media sites such as Facebook, Twitter, Instagram, Google+, Tumblr, LinkedIn, etc. The Indonesian people used social media platforms to express their positive, neutral, and also negative opinions on the respective presidential candidates. The campaigning of respective social media users on their choice of candidates for regents, governors, and legislative positions up to presidential candidates was conducted via the Internet and online media. Therefore, the aim of this paper is to conduct sentiment analysis on the candidates in the 2019 Indonesia presidential election based on Twitter datasets. The study used datasets on the opinions expressed by the Indonesian people available on Twitter with the hashtags (#) containing “Jokowi and Prabowo.” We conducted data pre-processing using a selection of comments, data cleansing, text parsing, sentence normalization and tokenization based on the given text in the Indonesian language, determination of class attributes, and, finally, we classified the Twitter posts with the hashtags (#) using Naïve Bayes Classifier (NBC) and a Support Vector Machine (SVM) to achieve an optimal and maximum optimization accuracy. The study provides benefits in terms of helping the community to research opinions on Twitter that contain positive, neutral, or negative sentiments. Sentiment Analysis on the candidates in the 2019 Indonesian presidential election on Twitter using non-conventional processes resulted in cost, time, and effort savings. This research proved that the combination of the SVM machine learning algorithm and alphabetic tokenization produced the highest accuracy value of 79.02%. While the lowest accuracy value in this study was obtained with a combination of the NBC machine learning algorithm and N-gram tokenization with an accuracy value of 44.94%.
format Article
author Buntoro, Ghulam Asrofi
Arifin, Rizal
Syaifuddiin, Gus Nanang
Selamat, Ali
Krejcar, Ondrej
Fujita, Hamido
author_facet Buntoro, Ghulam Asrofi
Arifin, Rizal
Syaifuddiin, Gus Nanang
Selamat, Ali
Krejcar, Ondrej
Fujita, Hamido
author_sort Buntoro, Ghulam Asrofi
title Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
title_short Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
title_full Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
title_fullStr Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
title_full_unstemmed Implementation of a machine learning algorithm for sentiment analysis of Indonesia‘s 2019 Presidential election
title_sort implementation of a machine learning algorithm for sentiment analysis of indonesia‘s 2019 presidential election
publisher International Islamic University Malaysia-IIUM
publishDate 2021
url http://eprints.utm.my/id/eprint/97858/1/AliSelamat2021_ImplementationOfAMachineLearningAlgorithmForSentimentAnalysis.pdf
http://eprints.utm.my/id/eprint/97858/
http://dx.doi.org/10.31436/IIUMEJ.V22I1.1532
_version_ 1751536113429774336