Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase
The goal of this project is to contribute, using molecular docking simulation, to the search for potential drug candidates for Covid-19. The COVID19 receptor used in this study was coronavirus hemagglutinin esterase and the drugs were spirosolane, oridonin and silymarin. The protein and the ligands...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Akademia Baru Publishing (M) Sdn Bhd
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/97861/1/NurulbahiyahAhmad2021_MolecularDockingStudiesofPotentialDrugs.pdf http://eprints.utm.my/id/eprint/97861/ https://www.akademiabaru.com/submit/index.php/jrnn/article/view/4177 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.97861 |
---|---|
record_format |
eprints |
spelling |
my.utm.978612022-11-07T10:06:45Z http://eprints.utm.my/id/eprint/97861/ Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase Abu Samah, Farhana Talib, Siti Zalita Mokhtar, Nur Ainun Ahmad Khairudin, Nurulbahiyah Q Science (General) TP Chemical technology The goal of this project is to contribute, using molecular docking simulation, to the search for potential drug candidates for Covid-19. The COVID19 receptor used in this study was coronavirus hemagglutinin esterase and the drugs were spirosolane, oridonin and silymarin. The protein and the ligands were downloaded from the protein data bank (PDB) and PubChem website, respectively. Using Autodock Tools, all downloaded proteins and ligands were then prepared. AutoDock Vina was used to perform molecular docking. The best binding sites were selected based on the ranking of binding energy or binding affinity given in kcal/mol. It was found that all three ligands produced low binding energies between -8 to -10 Kcal/mol. The analysis on molecular interactions were carried out to investigate the formation of hydrogen bonds and hydrophobic interactions in all docked conformations and silymarin was found to be the best ligand out of the three in terms of binding to the coronavirus hemagglutinin esterase. Akademia Baru Publishing (M) Sdn Bhd 2021-08 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/97861/1/NurulbahiyahAhmad2021_MolecularDockingStudiesofPotentialDrugs.pdf Abu Samah, Farhana and Talib, Siti Zalita and Mokhtar, Nur Ainun and Ahmad Khairudin, Nurulbahiyah (2021) Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase. Journal of Research in Nanoscience and Nanotechnology, 4 (1). pp. 13-18. ISSN 2773-6180 https://www.akademiabaru.com/submit/index.php/jrnn/article/view/4177 NA |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) TP Chemical technology |
spellingShingle |
Q Science (General) TP Chemical technology Abu Samah, Farhana Talib, Siti Zalita Mokhtar, Nur Ainun Ahmad Khairudin, Nurulbahiyah Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
description |
The goal of this project is to contribute, using molecular docking simulation, to the search for potential drug candidates for Covid-19. The COVID19 receptor used in this study was coronavirus hemagglutinin esterase and the drugs were spirosolane, oridonin and silymarin. The protein and the ligands were downloaded from the protein data bank (PDB) and PubChem website, respectively. Using Autodock Tools, all downloaded proteins and ligands were then prepared. AutoDock Vina was used to perform molecular docking. The best binding sites were selected based on the ranking of binding energy or binding affinity given in kcal/mol. It was found that all three ligands produced low binding energies between -8 to -10 Kcal/mol. The analysis on molecular interactions were carried out to investigate the formation of hydrogen bonds and hydrophobic interactions in all docked conformations and silymarin was found to be the best ligand out of the three in terms of binding to the coronavirus hemagglutinin esterase. |
format |
Article |
author |
Abu Samah, Farhana Talib, Siti Zalita Mokhtar, Nur Ainun Ahmad Khairudin, Nurulbahiyah |
author_facet |
Abu Samah, Farhana Talib, Siti Zalita Mokhtar, Nur Ainun Ahmad Khairudin, Nurulbahiyah |
author_sort |
Abu Samah, Farhana |
title |
Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
title_short |
Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
title_full |
Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
title_fullStr |
Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
title_full_unstemmed |
Molecular docking studies of potential drugs for Covid-19 targeting on the coronavirus hemagglutinin esterase |
title_sort |
molecular docking studies of potential drugs for covid-19 targeting on the coronavirus hemagglutinin esterase |
publisher |
Akademia Baru Publishing (M) Sdn Bhd |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/97861/1/NurulbahiyahAhmad2021_MolecularDockingStudiesofPotentialDrugs.pdf http://eprints.utm.my/id/eprint/97861/ https://www.akademiabaru.com/submit/index.php/jrnn/article/view/4177 |
_version_ |
1751536113865981952 |