Integrated OBF-NN models for extrapolation enhancement in conventional neural networks for nonlinear systems

Abstract In this paper the integration of linear and nonlinear models in parallel for nonlinear system identification is investigated. A residuals-based sequential identification algorithm using parallel integration of linear Orthornormal basis filters (OBF) and a nonlinear feedforward (MLP) N...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: H., Zabiri, M., Ramasamy, Lemma D, Tufa, Maulud, Abdulhalim
التنسيق: Conference or Workshop Item
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utp.edu.my/10748/1/HZabiri_aucc2011.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114303&tag=1
http://eprints.utp.edu.my/10748/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Teknologi Petronas
الوصف
الملخص:Abstract In this paper the integration of linear and nonlinear models in parallel for nonlinear system identification is investigated. A residuals-based sequential identification algorithm using parallel integration of linear Orthornormal basis filters (OBF) and a nonlinear feedforward (MLP) NN model is used and applied to the nonlinear Van de Vusse reactor. Results show improved extrapolation capability of the proposed method in comparison to conventional MLP NN, and opens up a promising area for further research and analysis.