Subspace-based technique for speckle noise reduction in ultrasound images
Background and purpose Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation...
Saved in:
Main Authors: | , , |
---|---|
Format: | Citation Index Journal |
Published: |
2014
|
Subjects: | |
Online Access: | http://eprints.utp.edu.my/11419/1/Subspace-based%20technique%20for%20speckle%20noise%20reduction%20in%20ultrasound%20images%20-%20Paper_BioMedCentral.pdf http://eprints.utp.edu.my/11419/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
Summary: | Background and purpose
Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
Methods
In this paper, a subspace-based speckle reduction technique in ultrasound images is proposed. The fundamental principle of subspace-based despeckling technique is to convert multiplicative speckle noise into additive via logarithmic transformation, then to decompose the vector space of the noisy image into signal and noise subspaces. Image enhancement is achieved by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimation of the clean image is derived by minimizing image distortion while maintaining the residual noise energy below some given threshold. The real US data for validation purposes were acquired under the IRB protocol (200210851-7) at the University of California Davis, which is also consistent with NIH requirements.
Results
Experiments are carried out using a synthetically generated B-mode ultrasound image, a computer generated cyst image and real ultrasound images. The performance of the proposed technique is compared with Lee, homomorphic wavelet and squeeze box filter (SBF) in terms of noise variance reduction, mean preservation, texture preservation and ultrasound despeckling assessment index (USDSAI). The results indicate better noise reduction capability with the simulated images by the SDC than Lee, Wavelet and SBF in addition to less blurry effect. With the real case scenario, the SDC, Lee, Wavelet and SBF are tested with images obtained from raw radio frequency (RF) data. Results generated using real US data indicate that, in addition to good contrast enhancement, the autocorrelation results shows better preservation of image texture by SDC than Lee, Wavelet and SBF. |
---|