Flow characteristics of 3-D turning diffuser using particle image velocimetry
It is often necessary in fluid flow systems to simultaneously decelerate and turn the flow. This can be achieved by employing turning diffusers in the fluid flow systems. The flow through a turning diffuser is complex, apparently due to the expansion and inflexion introduced along the direction of f...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
American Institute of Physics Inc.
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020236842&doi=10.1063%2f1.4981162&partnerID=40&md5=cffd51ce4fc6564fe0270c0971d91962 http://eprints.utp.edu.my/20096/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.20096 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.200962018-04-22T14:40:59Z Flow characteristics of 3-D turning diffuser using particle image velocimetry Nordin, N. Karim, Z.A.A. Othman, S. Raghavan, V.R. Batcha, M.F.M. Hariri, A. Basharie, S.M. It is often necessary in fluid flow systems to simultaneously decelerate and turn the flow. This can be achieved by employing turning diffusers in the fluid flow systems. The flow through a turning diffuser is complex, apparently due to the expansion and inflexion introduced along the direction of flow. The flow characteristics of 3-D turning diffuser by means of varying inflow Reynolds number are presently investigated. The flow characteristics within the outlet cross-section and longitudinal section were examined respectively by the 3-D stereoscopic PIV and 2-D PIV. The flow uniformity is affected with the increase of inflow Reynolds number due to the dispersion of the core flow throughout the outlet cross-section. It becomes even worse with the presence of secondary flow, 22 to 27 of the mean outlet velocity. The flow separation takes place within the inner wall region at the point very close to the outlet edge and the secondary flow vortex occurs dominantly within half part of the outlet cross-section. © 2017 Author(s). American Institute of Physics Inc. 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020236842&doi=10.1063%2f1.4981162&partnerID=40&md5=cffd51ce4fc6564fe0270c0971d91962 Nordin, N. and Karim, Z.A.A. and Othman, S. and Raghavan, V.R. and Batcha, M.F.M. and Hariri, A. and Basharie, S.M. (2017) Flow characteristics of 3-D turning diffuser using particle image velocimetry. AIP Conference Proceedings, 1831 . http://eprints.utp.edu.my/20096/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
It is often necessary in fluid flow systems to simultaneously decelerate and turn the flow. This can be achieved by employing turning diffusers in the fluid flow systems. The flow through a turning diffuser is complex, apparently due to the expansion and inflexion introduced along the direction of flow. The flow characteristics of 3-D turning diffuser by means of varying inflow Reynolds number are presently investigated. The flow characteristics within the outlet cross-section and longitudinal section were examined respectively by the 3-D stereoscopic PIV and 2-D PIV. The flow uniformity is affected with the increase of inflow Reynolds number due to the dispersion of the core flow throughout the outlet cross-section. It becomes even worse with the presence of secondary flow, 22 to 27 of the mean outlet velocity. The flow separation takes place within the inner wall region at the point very close to the outlet edge and the secondary flow vortex occurs dominantly within half part of the outlet cross-section. © 2017 Author(s). |
format |
Article |
author |
Nordin, N. Karim, Z.A.A. Othman, S. Raghavan, V.R. Batcha, M.F.M. Hariri, A. Basharie, S.M. |
spellingShingle |
Nordin, N. Karim, Z.A.A. Othman, S. Raghavan, V.R. Batcha, M.F.M. Hariri, A. Basharie, S.M. Flow characteristics of 3-D turning diffuser using particle image velocimetry |
author_facet |
Nordin, N. Karim, Z.A.A. Othman, S. Raghavan, V.R. Batcha, M.F.M. Hariri, A. Basharie, S.M. |
author_sort |
Nordin, N. |
title |
Flow characteristics of 3-D turning diffuser using particle image velocimetry |
title_short |
Flow characteristics of 3-D turning diffuser using particle image velocimetry |
title_full |
Flow characteristics of 3-D turning diffuser using particle image velocimetry |
title_fullStr |
Flow characteristics of 3-D turning diffuser using particle image velocimetry |
title_full_unstemmed |
Flow characteristics of 3-D turning diffuser using particle image velocimetry |
title_sort |
flow characteristics of 3-d turning diffuser using particle image velocimetry |
publisher |
American Institute of Physics Inc. |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020236842&doi=10.1063%2f1.4981162&partnerID=40&md5=cffd51ce4fc6564fe0270c0971d91962 http://eprints.utp.edu.my/20096/ |
_version_ |
1738656163050815488 |