Parallel based support vector regression for empirical modeling of nonlinear chemical process systems

In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent th...

Full description

Saved in:
Bibliographic Details
Main Authors: Zabiri, H., Marappagounder, R., Ramli, N.M.
Format: Article
Published: Penerbit Universiti Kebangsaan Malaysia 2018
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045654380&doi=10.17576%2fjsm-2018-4703-25&partnerID=40&md5=ab0ea71399a142639b56a8c597e3f7a6
http://eprints.utp.edu.my/20647/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
Be the first to leave a comment!
You must be logged in first