Model Identification Using Neuro-Fuzzy Approach
This chapter contains the discussion on fundamental concepts related to nonlinear model identification. First, linear in parameter model identification techniques are presented. This covers static and dynamic systems. Following that, the idea of developing nonlinear models in the framework of Orhono...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Published: |
Springer Verlag
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039982132&doi=10.1007%2f978-3-319-71871-2_3&partnerID=40&md5=5b2e4f17de24ac277fb456d437b527ce http://eprints.utp.edu.my/21263/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.21263 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.212632019-02-26T03:18:54Z Model Identification Using Neuro-Fuzzy Approach Lemma, T.A. This chapter contains the discussion on fundamental concepts related to nonlinear model identification. First, linear in parameter model identification techniques are presented. This covers static and dynamic systems. Following that, the idea of developing nonlinear models in the framework of Orhonormal Basis Functions (OBF) is described. In Sect. 3.3, basic theory of neural networks and fuzzy systems are elaborated. In the state of the art designs, one of them is constructed in the structure of the other allowing the development of a transparent model that can be trained with relatively minimal effort. Section 3.4 is dedicated to the discussion of nonlinear system identification using combined version of neural networks and fuzzy systems. Last section of the chapter deals with three different model training algorithms Least squares based, back-propagation and particle swarm optimization. © 2018, Springer International Publishing AG. Springer Verlag 2018 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039982132&doi=10.1007%2f978-3-319-71871-2_3&partnerID=40&md5=5b2e4f17de24ac277fb456d437b527ce Lemma, T.A. (2018) Model Identification Using Neuro-Fuzzy Approach. Studies in Computational Intelligence, 743 . pp. 37-74. http://eprints.utp.edu.my/21263/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
This chapter contains the discussion on fundamental concepts related to nonlinear model identification. First, linear in parameter model identification techniques are presented. This covers static and dynamic systems. Following that, the idea of developing nonlinear models in the framework of Orhonormal Basis Functions (OBF) is described. In Sect. 3.3, basic theory of neural networks and fuzzy systems are elaborated. In the state of the art designs, one of them is constructed in the structure of the other allowing the development of a transparent model that can be trained with relatively minimal effort. Section 3.4 is dedicated to the discussion of nonlinear system identification using combined version of neural networks and fuzzy systems. Last section of the chapter deals with three different model training algorithms Least squares based, back-propagation and particle swarm optimization. © 2018, Springer International Publishing AG. |
format |
Article |
author |
Lemma, T.A. |
spellingShingle |
Lemma, T.A. Model Identification Using Neuro-Fuzzy Approach |
author_facet |
Lemma, T.A. |
author_sort |
Lemma, T.A. |
title |
Model Identification Using Neuro-Fuzzy Approach |
title_short |
Model Identification Using Neuro-Fuzzy Approach |
title_full |
Model Identification Using Neuro-Fuzzy Approach |
title_fullStr |
Model Identification Using Neuro-Fuzzy Approach |
title_full_unstemmed |
Model Identification Using Neuro-Fuzzy Approach |
title_sort |
model identification using neuro-fuzzy approach |
publisher |
Springer Verlag |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039982132&doi=10.1007%2f978-3-319-71871-2_3&partnerID=40&md5=5b2e4f17de24ac277fb456d437b527ce http://eprints.utp.edu.my/21263/ |
_version_ |
1738656264841330688 |