Valorization of Bambara groundnut shell via intermediate pyrolysis: Products distribution and characterization
This study provides first report on thermochemical conversion of residue from one of the underutilized crops, Bambara groundnut. Shells from two Bambara groundnut landraces KARO and EX-SOKOTO were used. Pyrolysis was conducted in a vertical fixed bed reactor at 500, 550, 600 and 650 °C; 50 °C/min...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2016
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995578575&doi=10.1016%2fj.jclepro.2016.08.090&partnerID=40&md5=e6a802811e04e778f73c41fa17fe9e15 http://eprints.utp.edu.my/25870/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
Summary: | This study provides first report on thermochemical conversion of residue from one of the underutilized crops, Bambara groundnut. Shells from two Bambara groundnut landraces KARO and EX-SOKOTO were used. Pyrolysis was conducted in a vertical fixed bed reactor at 500, 550, 600 and 650 °C; 50 °C/min heating rate and 5 L/min nitrogen flow rate. The report gives experimental results on characteristic of the feedstock, impact of temperature on the pyrolysis product distribution (bio-oil, bio-char and non-condensable gas). It evaluates the chemical and physicochemical properties of bio-oil, characteristics of bio-char and composition of the non-condensable gas using standard analytical techniques. KARO shell produced more bio-oil and was maximum at 600 °C (37.21 wt) compared to EX-SOKOTO with the highest bio-oil yield of 32.79 wt under the same condition. Two-phase bio-oil (organic and aqueous) was collected and analyzed. The organic phase from both feedstocks was made up of benzene derivatives which can be used as a precursor for quality biofuel production while the aqueous from KARO consisted sugars and other valuable chemicals compared to the aqueous phase from EX-SOKOTO which comprised of acids, ketones, aldehydes and phenols. Characteristics of bio-char and composition of the non-condensable were also determined. The results show that bio-char is rich in carbon and some minerals which can be utilized either as a solid fuel or source of bio-fertilizer. The non-condensable gas was made up of methane, hydrogen, carbon monoxide and carbon dioxide, which can be recycled to the reactor as a carrier gas. This study demonstrated recovery of high quality fuel precursor and other valuable materials from Bambara groundnut shell. © 2016 Elsevier Ltd |
---|