Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia

Natural gas, which is found as free, dissolved, and adsorbed gas, is abundant in organic-rich shales. Despite the growing relevance of sorbed gas, there are still questions about how lithological variables, as well as shale mineralogical, geochemical, and petrophysical features, influence gas sorpti...

Full description

Saved in:
Bibliographic Details
Main Authors: Syed, I.M., Padmanabhan, E.
Format: Conference or Workshop Item
Published: Unconventional Resources Technology Conference (URTEC) 2021
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123998214&doi=10.15530%2fAP-URTEC-2021-208392&partnerID=40&md5=b6db83f29b91a17376500198bcbba0a1
http://eprints.utp.edu.my/29240/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.29240
record_format eprints
spelling my.utp.eprints.292402022-03-25T01:15:22Z Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia Syed, I.M. Padmanabhan, E. Natural gas, which is found as free, dissolved, and adsorbed gas, is abundant in organic-rich shales. Despite the growing relevance of sorbed gas, there are still questions about how lithological variables, as well as shale mineralogical, geochemical, and petrophysical features, influence gas sorption capacity. Therefore, the overall aim of this research was to relate variations in mineralogical, geochemical, and petrophysical properties of selected Paleozoic shale samples from Western Peninsular (WP) Malaysia comprising seven formations to their sorption capacities. Despite the apparent homogeneity at a mesoscale, micro-scale variations may exist between different ages and localities of the shales. These variations are significant enough to allow the classification of the shales into different categories based on their age instead of dealing with them as a single unit. Therefore, shales from WP Malaysia are grouped into four divisions i.e S-D (Silurian-Devonian), Devonian, Carboniferous, and Permian shales respectively. Low-pressure Nitrogen adsorption reveals older shales i.e., S-D and Devonian show higher average surface area and the lower average of pore diameter and total pore volume as compared to younger shales i.e., Carboniferous and Permian. The impact of methane sorption capacities (MSC) on studied shales revealed that total organic carbon (TOC) and Vitrinite Reflectance (Ro) are the primary controlling factor of methane adsorption on shale. However, S-D and Devonian shales revealed that TOC is not the primary factor as clay minerals contribute more towards MSC in these shales. Clay mineralogy roles are skeptical as they may have positive, negative, or sometimes no correlation with MSC. The impact of pore structure parameters i.e., pore diameter, pore-volume, and the specific surface area also shows the distinct influence on MSC. Furthermore, present investigations in shales help to understand the shale gas adsorption mechanisms and could deliver a scientific platform for the assessment and development of the green shale gas industry. © 2021 Unconventional Resources Technology Conference (URTeC) Unconventional Resources Technology Conference (URTEC) 2021 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123998214&doi=10.15530%2fAP-URTEC-2021-208392&partnerID=40&md5=b6db83f29b91a17376500198bcbba0a1 Syed, I.M. and Padmanabhan, E. (2021) Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia. In: UNSPECIFIED. http://eprints.utp.edu.my/29240/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Natural gas, which is found as free, dissolved, and adsorbed gas, is abundant in organic-rich shales. Despite the growing relevance of sorbed gas, there are still questions about how lithological variables, as well as shale mineralogical, geochemical, and petrophysical features, influence gas sorption capacity. Therefore, the overall aim of this research was to relate variations in mineralogical, geochemical, and petrophysical properties of selected Paleozoic shale samples from Western Peninsular (WP) Malaysia comprising seven formations to their sorption capacities. Despite the apparent homogeneity at a mesoscale, micro-scale variations may exist between different ages and localities of the shales. These variations are significant enough to allow the classification of the shales into different categories based on their age instead of dealing with them as a single unit. Therefore, shales from WP Malaysia are grouped into four divisions i.e S-D (Silurian-Devonian), Devonian, Carboniferous, and Permian shales respectively. Low-pressure Nitrogen adsorption reveals older shales i.e., S-D and Devonian show higher average surface area and the lower average of pore diameter and total pore volume as compared to younger shales i.e., Carboniferous and Permian. The impact of methane sorption capacities (MSC) on studied shales revealed that total organic carbon (TOC) and Vitrinite Reflectance (Ro) are the primary controlling factor of methane adsorption on shale. However, S-D and Devonian shales revealed that TOC is not the primary factor as clay minerals contribute more towards MSC in these shales. Clay mineralogy roles are skeptical as they may have positive, negative, or sometimes no correlation with MSC. The impact of pore structure parameters i.e., pore diameter, pore-volume, and the specific surface area also shows the distinct influence on MSC. Furthermore, present investigations in shales help to understand the shale gas adsorption mechanisms and could deliver a scientific platform for the assessment and development of the green shale gas industry. © 2021 Unconventional Resources Technology Conference (URTeC)
format Conference or Workshop Item
author Syed, I.M.
Padmanabhan, E.
spellingShingle Syed, I.M.
Padmanabhan, E.
Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
author_facet Syed, I.M.
Padmanabhan, E.
author_sort Syed, I.M.
title Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
title_short Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
title_full Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
title_fullStr Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
title_full_unstemmed Impact of Heterogeneities on Sorption Capacities of Potential Paleozoic Gas Shales from Western Peninsular Malaysia
title_sort impact of heterogeneities on sorption capacities of potential paleozoic gas shales from western peninsular malaysia
publisher Unconventional Resources Technology Conference (URTEC)
publishDate 2021
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123998214&doi=10.15530%2fAP-URTEC-2021-208392&partnerID=40&md5=b6db83f29b91a17376500198bcbba0a1
http://eprints.utp.edu.my/29240/
_version_ 1738656937783853056