Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery
The continuing depletion of light oil supplies and the rapidly growing demand for energy are forcing oil and gas companies to explore unconventional oil extraction techniques. The structure and flow rate implies an impact on the trapping and mobilization of oil in the reservoir. This article studies...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Trans Tech Publications Ltd
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121582150&doi=10.4028%2fwww.scientific.net%2fDDF.413.77&partnerID=40&md5=612e6a592431a159f753bf5bcf5001a6 http://eprints.utp.edu.my/29336/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.29336 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.293362022-03-25T01:34:06Z Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery Soleimani, H. Ali, H. Yahya, N. Khodapanah, L. Sabet, M. Demiral, B.M.R. Kozlowski, G. The continuing depletion of light oil supplies and the rapidly growing demand for energy are forcing oil and gas companies to explore unconventional oil extraction techniques. The structure and flow rate implies an impact on the trapping and mobilization of oil in the reservoir. This article studies the effect of pore geometry and dynamics on water-oil displacement as a two-phase flow system. The pore geometries of sandstone were extracted using the non-destructive 3D micro computational tomography (micro-CT) technique. Two-phase flow simulations were performed using COMSOL Multiphysics on the micro-CT images to show the effect of the capillary number and the flow pattern. Velocity and relative permeability of the non-wetting phase at different points of the porous structure was computed. The effect of viscosity of wetting fluid on the pore structure was also studied to evaluate the parameters affecting enhanced oil recovery (EOR). © 2021 Trans Tech Publications Ltd, Switzerland. Trans Tech Publications Ltd 2021 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121582150&doi=10.4028%2fwww.scientific.net%2fDDF.413.77&partnerID=40&md5=612e6a592431a159f753bf5bcf5001a6 Soleimani, H. and Ali, H. and Yahya, N. and Khodapanah, L. and Sabet, M. and Demiral, B.M.R. and Kozlowski, G. (2021) Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery. Defect and Diffusion Forum, 413 . pp. 77-83. http://eprints.utp.edu.my/29336/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The continuing depletion of light oil supplies and the rapidly growing demand for energy are forcing oil and gas companies to explore unconventional oil extraction techniques. The structure and flow rate implies an impact on the trapping and mobilization of oil in the reservoir. This article studies the effect of pore geometry and dynamics on water-oil displacement as a two-phase flow system. The pore geometries of sandstone were extracted using the non-destructive 3D micro computational tomography (micro-CT) technique. Two-phase flow simulations were performed using COMSOL Multiphysics on the micro-CT images to show the effect of the capillary number and the flow pattern. Velocity and relative permeability of the non-wetting phase at different points of the porous structure was computed. The effect of viscosity of wetting fluid on the pore structure was also studied to evaluate the parameters affecting enhanced oil recovery (EOR). © 2021 Trans Tech Publications Ltd, Switzerland. |
format |
Article |
author |
Soleimani, H. Ali, H. Yahya, N. Khodapanah, L. Sabet, M. Demiral, B.M.R. Kozlowski, G. |
spellingShingle |
Soleimani, H. Ali, H. Yahya, N. Khodapanah, L. Sabet, M. Demiral, B.M.R. Kozlowski, G. Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
author_facet |
Soleimani, H. Ali, H. Yahya, N. Khodapanah, L. Sabet, M. Demiral, B.M.R. Kozlowski, G. |
author_sort |
Soleimani, H. |
title |
Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
title_short |
Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
title_full |
Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
title_fullStr |
Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
title_full_unstemmed |
Dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
title_sort |
dynamics and geometry effects on the capillary flows in porous media for enhanced oil recovery |
publisher |
Trans Tech Publications Ltd |
publishDate |
2021 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121582150&doi=10.4028%2fwww.scientific.net%2fDDF.413.77&partnerID=40&md5=612e6a592431a159f753bf5bcf5001a6 http://eprints.utp.edu.my/29336/ |
_version_ |
1738656951409049600 |