Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan
Produced water is a significant waste stream because of its changing characteristics from well to well. It is on the increase and requires remediation. Treating produced water with adsorption provides better performance for heavy metals when compared to other techniques. The main objective of this s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100754577&doi=10.1109%2fIEEECONF51154.2020.9319976&partnerID=40&md5=7f1efc382abfbfdd3142c9be36b207bb http://eprints.utp.edu.my/29763/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.29763 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.297632022-03-25T02:49:24Z Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan Zaman, H.G. Baloo, L. Pendyala, R. Kutty, S.R.B.M. Produced water is a significant waste stream because of its changing characteristics from well to well. It is on the increase and requires remediation. Treating produced water with adsorption provides better performance for heavy metals when compared to other techniques. The main objective of this study was to investigate and optimize the adsorption process in removing toxic metal using the CCD (central composite design) which is RSM (response surface methodology) module in the software Design-Expert®. The effect of adsorbent dosage, contact time, and pH were analyzed empirically and optimized successfully by RSM. The presence of Cd (II) in produced water represents a major environmental and human health risk due to its high toxicity and bioaccumulation potential. Statistically significant quadratic polynomial for Cd (II) was obtained via regression analysis R2 (0.94). The highest removal efficiency 88.45 was achieved under the optimized conditions at pH 6, dosage 6 g/L, contact time 60 minutes, and initial concentration of 6ppm. © 2020 IEEE. Institute of Electrical and Electronics Engineers Inc. 2020 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100754577&doi=10.1109%2fIEEECONF51154.2020.9319976&partnerID=40&md5=7f1efc382abfbfdd3142c9be36b207bb Zaman, H.G. and Baloo, L. and Pendyala, R. and Kutty, S.R.B.M. (2020) Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan. In: UNSPECIFIED. http://eprints.utp.edu.my/29763/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Produced water is a significant waste stream because of its changing characteristics from well to well. It is on the increase and requires remediation. Treating produced water with adsorption provides better performance for heavy metals when compared to other techniques. The main objective of this study was to investigate and optimize the adsorption process in removing toxic metal using the CCD (central composite design) which is RSM (response surface methodology) module in the software Design-Expert®. The effect of adsorbent dosage, contact time, and pH were analyzed empirically and optimized successfully by RSM. The presence of Cd (II) in produced water represents a major environmental and human health risk due to its high toxicity and bioaccumulation potential. Statistically significant quadratic polynomial for Cd (II) was obtained via regression analysis R2 (0.94). The highest removal efficiency 88.45 was achieved under the optimized conditions at pH 6, dosage 6 g/L, contact time 60 minutes, and initial concentration of 6ppm. © 2020 IEEE. |
format |
Conference or Workshop Item |
author |
Zaman, H.G. Baloo, L. Pendyala, R. Kutty, S.R.B.M. |
spellingShingle |
Zaman, H.G. Baloo, L. Pendyala, R. Kutty, S.R.B.M. Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
author_facet |
Zaman, H.G. Baloo, L. Pendyala, R. Kutty, S.R.B.M. |
author_sort |
Zaman, H.G. |
title |
Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
title_short |
Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
title_full |
Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
title_fullStr |
Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
title_full_unstemmed |
Response Surface Methodology Application in the Optimization of Cd(II) Removal from Produced Water by Chitosan |
title_sort |
response surface methodology application in the optimization of cd(ii) removal from produced water by chitosan |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100754577&doi=10.1109%2fIEEECONF51154.2020.9319976&partnerID=40&md5=7f1efc382abfbfdd3142c9be36b207bb http://eprints.utp.edu.my/29763/ |
_version_ |
1738657012103774208 |