Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor
Background: Inflammatory mediators produced by cyclooxygenase (COX) and lipoxygenase (LOX) pathways are responsible for many human diseases, such as cancer, arthritis, and neurological disorders. Flavonoid-containing plants, such as Ipomoea batatas leaves, have shown potential anti-inflammatory acti...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Wolters Kluwer Medknow Publications
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096783513&doi=10.4103%2fjpbs.JPBS_103_20&partnerID=40&md5=fd8c8f2ad9a7d19847e4afe5c09425c8 http://eprints.utp.edu.my/29821/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.29821 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.298212022-03-25T02:56:55Z Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor Yeni, Y. Supandi, S. Dwita, L.P. Suswandari, S. Shaharun, M.S. Sambudi, N.S. Background: Inflammatory mediators produced by cyclooxygenase (COX) and lipoxygenase (LOX) pathways are responsible for many human diseases, such as cancer, arthritis, and neurological disorders. Flavonoid-containing plants, such as Ipomoea batatas leaves, have shown potential anti-inflammatory activity. Objectives: This study aimed to predict the actions of 10 compounds in I. batatas leaves, which are YGM�0a cyanidin 3�0�sophoroside�5�0�glucosede, YGM�0f cyanidin 3�O�(2�0�(6�0�(E)�p�coumaroyl�β�D�g l u c o p y r a n o s y l) � β � D � g l u c o p y r a n o s i d e) � 5 � 0 � β � D � g l u c o p y r a n o s i d e , YGM�1a cyanidin 3�(6,6��caffeylp�hydroxybenzoylsophoroside) �5�glucoside, YGM�1b cyanidin 3�(6,6��dicaffeylsophor-oside)�5�glucoside, YGM�2 cyanidin 3�(6�caffeylsophoroside)�5�glucoside, YGM�3 cyanidin 3�(6,6��caffeyl-ferulylsophoroside)�5�glucoside, YGM�4b peonidin 3�(6,6��dicaffeylsophoroside)�5� glucoside, YGM�5a peonidin 3�(6,6��caffeylphydroxybenzo-ylsophoroside)�5�gluco-side, YGM�5b cyanidin 3�6�caffeylsophoroside)�5�glucosede, and YGM�6 peonidin 3�(6,6��caffeylferulylsophoroside)�5�glucoside as LOX inhibitors, and also predict the stability of ligand�LOX complex. Materials and Methods: The compounds were screened through docking studies using PLANTS. Also, the molecular dynamics simulation was conducted using GROMACS at 310 K. Results: The results showed that the most significant binding affinity toward LOX was shown by YGM�0a and YGM�0a, and the LOX complex in molecular dynamics simulation showed stability for 20 ns. Conclusion: Based on Docking Studies and Molecular Dynamics Simulation of I. Batatas Leaves compounds, YGM-0a was shown to be the most probable LOX inhibitor. © 2020 Wolters Kluwer Medknow Publications. All rights reserved. Wolters Kluwer Medknow Publications 2020 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096783513&doi=10.4103%2fjpbs.JPBS_103_20&partnerID=40&md5=fd8c8f2ad9a7d19847e4afe5c09425c8 Yeni, Y. and Supandi, S. and Dwita, L.P. and Suswandari, S. and Shaharun, M.S. and Sambudi, N.S. (2020) Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor. Journal of Pharmacy and Bioallied Sciences, 12 (6). S836-S840. http://eprints.utp.edu.my/29821/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Background: Inflammatory mediators produced by cyclooxygenase (COX) and lipoxygenase (LOX) pathways are responsible for many human diseases, such as cancer, arthritis, and neurological disorders. Flavonoid-containing plants, such as Ipomoea batatas leaves, have shown potential anti-inflammatory activity. Objectives: This study aimed to predict the actions of 10 compounds in I. batatas leaves, which are YGM�0a cyanidin 3�0�sophoroside�5�0�glucosede, YGM�0f cyanidin 3�O�(2�0�(6�0�(E)�p�coumaroyl�β�D�g l u c o p y r a n o s y l) � β � D � g l u c o p y r a n o s i d e) � 5 � 0 � β � D � g l u c o p y r a n o s i d e , YGM�1a cyanidin 3�(6,6��caffeylp�hydroxybenzoylsophoroside) �5�glucoside, YGM�1b cyanidin 3�(6,6��dicaffeylsophor-oside)�5�glucoside, YGM�2 cyanidin 3�(6�caffeylsophoroside)�5�glucoside, YGM�3 cyanidin 3�(6,6��caffeyl-ferulylsophoroside)�5�glucoside, YGM�4b peonidin 3�(6,6��dicaffeylsophoroside)�5� glucoside, YGM�5a peonidin 3�(6,6��caffeylphydroxybenzo-ylsophoroside)�5�gluco-side, YGM�5b cyanidin 3�6�caffeylsophoroside)�5�glucosede, and YGM�6 peonidin 3�(6,6��caffeylferulylsophoroside)�5�glucoside as LOX inhibitors, and also predict the stability of ligand�LOX complex. Materials and Methods: The compounds were screened through docking studies using PLANTS. Also, the molecular dynamics simulation was conducted using GROMACS at 310 K. Results: The results showed that the most significant binding affinity toward LOX was shown by YGM�0a and YGM�0a, and the LOX complex in molecular dynamics simulation showed stability for 20 ns. Conclusion: Based on Docking Studies and Molecular Dynamics Simulation of I. Batatas Leaves compounds, YGM-0a was shown to be the most probable LOX inhibitor. © 2020 Wolters Kluwer Medknow Publications. All rights reserved. |
format |
Article |
author |
Yeni, Y. Supandi, S. Dwita, L.P. Suswandari, S. Shaharun, M.S. Sambudi, N.S. |
spellingShingle |
Yeni, Y. Supandi, S. Dwita, L.P. Suswandari, S. Shaharun, M.S. Sambudi, N.S. Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
author_facet |
Yeni, Y. Supandi, S. Dwita, L.P. Suswandari, S. Shaharun, M.S. Sambudi, N.S. |
author_sort |
Yeni, Y. |
title |
Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
title_short |
Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
title_full |
Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
title_fullStr |
Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
title_full_unstemmed |
Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor |
title_sort |
docking studies and molecular dynamics simulation of ipomoea batatas l. leaves compounds as lipoxygenase (lox) inhibitor |
publisher |
Wolters Kluwer Medknow Publications |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096783513&doi=10.4103%2fjpbs.JPBS_103_20&partnerID=40&md5=fd8c8f2ad9a7d19847e4afe5c09425c8 http://eprints.utp.edu.my/29821/ |
_version_ |
1738657020210315264 |