Sentiment analysis techniques to analyze hse situational awareness at oil and gas platforms using machine learning
Health Safety & Environment (HSE) situational awareness is a very important aspect of any risky workplace. Negligence in complying with HSE policies and practices might lead to unwanted incidents, critical injuries, death, spread of diseases and environmental pollution. In most corporations, inf...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Engg Journals Publications
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094810514&doi=10.21817%2findjcse%2f2020%2fv11i5%2f201105244&partnerID=40&md5=dbe17cbecf5075c11527d6f8838e0344 http://eprints.utp.edu.my/30042/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
Summary: | Health Safety & Environment (HSE) situational awareness is a very important aspect of any risky workplace. Negligence in complying with HSE policies and practices might lead to unwanted incidents, critical injuries, death, spread of diseases and environmental pollution. In most corporations, information on HSE related incidents is disseminated through formal channels such as reports. Employees on the other hand frequently use social media to share, complain and discuss HSE-related issues. The issues are discussed through an informal platform, it is difficult to analyze opinions for further action. Therefore, this study will investigate existing sentiment analysis models and formulate a suitable sentiment analysis model using machine learning technique. Through literature review, Naïve Bayes model was found to be the most efficient text classification in sentiment analysis. This technique still needs further enhancement as the accuracy is not within requirement. Upon enhancing the Naïve Bayes model, a better outcome can be attained. © 2020, Engg Journals Publications. All rights reserved. |
---|