Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite

The main objective of this research is to investigate the effect of compression cycles and hybridization on mechanical and physical properties of kenaf fiber reinforced POM composite. In this study, kenaf, and polyethylene terephthalate (PET) fiber were used as reinforcements due to their excellent...

Full description

Saved in:
Bibliographic Details
Main Authors: Dan-Mallam, Y., Abdullah, M.Z., Megat Yusoff, P.S.M.
Format: Article
Published: Taylor and Francis Inc. 2016
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981717436&doi=10.1080%2f15440478.2015.1076366&partnerID=40&md5=2d32af4b8a79653cfd1d55fafc1798df
http://eprints.utp.edu.my/30818/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.30818
record_format eprints
spelling my.utp.eprints.308182022-03-25T07:38:34Z Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite Dan-Mallam, Y. Abdullah, M.Z. Megat Yusoff, P.S.M. The main objective of this research is to investigate the effect of compression cycles and hybridization on mechanical and physical properties of kenaf fiber reinforced POM composite. In this study, kenaf, and polyethylene terephthalate (PET) fiber were used as reinforcements due to their excellent mechanical properties and resistance to thermal degradation during recycling process. The matrix used was polyoxymethylene (POM) copolymer due to its hydrophobic characteristics and good mechanical properties. In this investigation, two formulations namely POM/kenaf, and POM/kenaf/PET hybrid composite were carefully studied. The results of the investigation revealed that the tensile strength of both POM/kenaf, and POM/kenaf/PET after first recycling process dropped by approximately 83 and 67, respectively. The tensile strength remained consistent after second and third compression cycle. The flexural strength of both composites also dropped by nearly 50 and 53, but remained consistent after second and third compression cycle. However, the composite resistance to water absorption significantly increased due to less voids and micro-cracks observed after recycling process. The results obtained have shown that the recycled composites retained their mechanical properties after the last two compression cycles. © 2016 Taylor & Francis. Taylor and Francis Inc. 2016 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981717436&doi=10.1080%2f15440478.2015.1076366&partnerID=40&md5=2d32af4b8a79653cfd1d55fafc1798df Dan-Mallam, Y. and Abdullah, M.Z. and Megat Yusoff, P.S.M. (2016) Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite. Journal of Natural Fibers, 13 (5). pp. 532-546. http://eprints.utp.edu.my/30818/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The main objective of this research is to investigate the effect of compression cycles and hybridization on mechanical and physical properties of kenaf fiber reinforced POM composite. In this study, kenaf, and polyethylene terephthalate (PET) fiber were used as reinforcements due to their excellent mechanical properties and resistance to thermal degradation during recycling process. The matrix used was polyoxymethylene (POM) copolymer due to its hydrophobic characteristics and good mechanical properties. In this investigation, two formulations namely POM/kenaf, and POM/kenaf/PET hybrid composite were carefully studied. The results of the investigation revealed that the tensile strength of both POM/kenaf, and POM/kenaf/PET after first recycling process dropped by approximately 83 and 67, respectively. The tensile strength remained consistent after second and third compression cycle. The flexural strength of both composites also dropped by nearly 50 and 53, but remained consistent after second and third compression cycle. However, the composite resistance to water absorption significantly increased due to less voids and micro-cracks observed after recycling process. The results obtained have shown that the recycled composites retained their mechanical properties after the last two compression cycles. © 2016 Taylor & Francis.
format Article
author Dan-Mallam, Y.
Abdullah, M.Z.
Megat Yusoff, P.S.M.
spellingShingle Dan-Mallam, Y.
Abdullah, M.Z.
Megat Yusoff, P.S.M.
Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
author_facet Dan-Mallam, Y.
Abdullah, M.Z.
Megat Yusoff, P.S.M.
author_sort Dan-Mallam, Y.
title Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
title_short Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
title_full Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
title_fullStr Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
title_full_unstemmed Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite
title_sort influence of recycling frequency on mechanical and physical properties of kenaf fiber reinforced polyoxymethylene composite
publisher Taylor and Francis Inc.
publishDate 2016
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981717436&doi=10.1080%2f15440478.2015.1076366&partnerID=40&md5=2d32af4b8a79653cfd1d55fafc1798df
http://eprints.utp.edu.my/30818/
_version_ 1738657161089646592