End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks

Providing better communication and maximising the communication performance in a Underwater Wireless Sensor Network (UWSN) is always challenging due to the volatile characteristics of the underwater environment. Radio signals cannot properly propagate underwater, so there is a need for acoustic tech...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali, T., Jung, L.T., Faye, I.
Format: Article
Published: Kluwer Academic Publishers 2014
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910007008&doi=10.1007%2fs11277-014-1859-z&partnerID=40&md5=6a89fc075db7591a07997c6d8f4b35b3
http://eprints.utp.edu.my/31112/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.31112
record_format eprints
spelling my.utp.eprints.311122022-03-25T09:00:14Z End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks Ali, T. Jung, L.T. Faye, I. Providing better communication and maximising the communication performance in a Underwater Wireless Sensor Network (UWSN) is always challenging due to the volatile characteristics of the underwater environment. Radio signals cannot properly propagate underwater, so there is a need for acoustic technology that can support better data rates and reliable underwater wireless communications. Node mobility, 3-D spaces and horizontal communication links are some critical challenges to the researcher in designing new routing protocols for UWSNs. In this paper, we have proposed a novel routing protocol called Layer by layer Angle-Based Flooding (L2-ABF) to address the issues of continuous node movements, end-to-end delays and energy consumption. In L2-ABF, every node can calculate its flooding angle to forward data packets toward the sinks without using any explicit configuration or location information. The simulation results show that L2-ABF has some advantages over some existing flooding-based techniques and also can easily manage quick routing changes where node movements are frequent. © 2014, Springer Science+Business Media New York. Kluwer Academic Publishers 2014 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910007008&doi=10.1007%2fs11277-014-1859-z&partnerID=40&md5=6a89fc075db7591a07997c6d8f4b35b3 Ali, T. and Jung, L.T. and Faye, I. (2014) End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks. Wireless Personal Communications, 79 (1). pp. 339-361. http://eprints.utp.edu.my/31112/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Providing better communication and maximising the communication performance in a Underwater Wireless Sensor Network (UWSN) is always challenging due to the volatile characteristics of the underwater environment. Radio signals cannot properly propagate underwater, so there is a need for acoustic technology that can support better data rates and reliable underwater wireless communications. Node mobility, 3-D spaces and horizontal communication links are some critical challenges to the researcher in designing new routing protocols for UWSNs. In this paper, we have proposed a novel routing protocol called Layer by layer Angle-Based Flooding (L2-ABF) to address the issues of continuous node movements, end-to-end delays and energy consumption. In L2-ABF, every node can calculate its flooding angle to forward data packets toward the sinks without using any explicit configuration or location information. The simulation results show that L2-ABF has some advantages over some existing flooding-based techniques and also can easily manage quick routing changes where node movements are frequent. © 2014, Springer Science+Business Media New York.
format Article
author Ali, T.
Jung, L.T.
Faye, I.
spellingShingle Ali, T.
Jung, L.T.
Faye, I.
End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
author_facet Ali, T.
Jung, L.T.
Faye, I.
author_sort Ali, T.
title End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
title_short End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
title_full End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
title_fullStr End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
title_full_unstemmed End-to-End Delay and Energy Efficient Routing Protocol for Underwater Wireless Sensor Networks
title_sort end-to-end delay and energy efficient routing protocol for underwater wireless sensor networks
publisher Kluwer Academic Publishers
publishDate 2014
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910007008&doi=10.1007%2fs11277-014-1859-z&partnerID=40&md5=6a89fc075db7591a07997c6d8f4b35b3
http://eprints.utp.edu.my/31112/
_version_ 1738657202080579584