Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network

Abstract— Salmonellosis is one of the most common seasonal zoonosis. As from the definition, zoonosis refers to the transmission of infectious diseases from animal to human. This paper presents the prediction of Salmonellosis incidence using Artificial Neural Network (ANN) on the basis of monthly...

Full description

Saved in:
Bibliographic Details
Main Authors: Adhistya Erna, Permanasari, Dayang R.A. Rambli, Rohaya, Dominic P, Dhanapal Durai
Format: Conference or Workshop Item
Published: 2010
Subjects:
Online Access:http://eprints.utp.edu.my/3264/1/Erna_ICCAE_2010.pdf
http://eprints.utp.edu.my/3264/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.3264
record_format eprints
spelling my.utp.eprints.32642017-01-19T08:24:32Z Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network Adhistya Erna, Permanasari Dayang R.A. Rambli, Rohaya Dominic P, Dhanapal Durai QA75 Electronic computers. Computer science Abstract— Salmonellosis is one of the most common seasonal zoonosis. As from the definition, zoonosis refers to the transmission of infectious diseases from animal to human. This paper presents the prediction of Salmonellosis incidence using Artificial Neural Network (ANN) on the basis of monthly data.A series of Salmonellosis incidence in US from 1993 to 2006, published by Centers for Disease Control and Prevention (CDC), was collected for technical analysis. Multi Layer Perceptron (MLP) has been chosen for the ANN design. The model consists of three layers: input layer, hidden layer, and output layer. Number of nodes in hidden layer was varied in order to find the most accurate forecasting result. The comparisons of models were justified by using Mean Absolute Percentage Error (MAPE). Furthermore, MAPE and Theil’s U were used to measure the result accuracy. The least MAPE derived from the best model was 10.761 and Theil’s U value was 0.209. It implied that the model was highly accurate and a close fit. It was also indicated the capability of final model to closely represent and made prediction based on the tuberculosis historical dataset. 2010 Conference or Workshop Item PeerReviewed application/pdf http://eprints.utp.edu.my/3264/1/Erna_ICCAE_2010.pdf Adhistya Erna, Permanasari and Dayang R.A. Rambli, Rohaya and Dominic P, Dhanapal Durai (2010) Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network. In: ICCAE singapore 2010, Singapore. http://eprints.utp.edu.my/3264/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Adhistya Erna, Permanasari
Dayang R.A. Rambli, Rohaya
Dominic P, Dhanapal Durai
Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
description Abstract— Salmonellosis is one of the most common seasonal zoonosis. As from the definition, zoonosis refers to the transmission of infectious diseases from animal to human. This paper presents the prediction of Salmonellosis incidence using Artificial Neural Network (ANN) on the basis of monthly data.A series of Salmonellosis incidence in US from 1993 to 2006, published by Centers for Disease Control and Prevention (CDC), was collected for technical analysis. Multi Layer Perceptron (MLP) has been chosen for the ANN design. The model consists of three layers: input layer, hidden layer, and output layer. Number of nodes in hidden layer was varied in order to find the most accurate forecasting result. The comparisons of models were justified by using Mean Absolute Percentage Error (MAPE). Furthermore, MAPE and Theil’s U were used to measure the result accuracy. The least MAPE derived from the best model was 10.761 and Theil’s U value was 0.209. It implied that the model was highly accurate and a close fit. It was also indicated the capability of final model to closely represent and made prediction based on the tuberculosis historical dataset.
format Conference or Workshop Item
author Adhistya Erna, Permanasari
Dayang R.A. Rambli, Rohaya
Dominic P, Dhanapal Durai
author_facet Adhistya Erna, Permanasari
Dayang R.A. Rambli, Rohaya
Dominic P, Dhanapal Durai
author_sort Adhistya Erna, Permanasari
title Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
title_short Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
title_full Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
title_fullStr Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
title_full_unstemmed Forecasting of Salmonellosis Incidence in Human using Artificial Neural Network
title_sort forecasting of salmonellosis incidence in human using artificial neural network
publishDate 2010
url http://eprints.utp.edu.my/3264/1/Erna_ICCAE_2010.pdf
http://eprints.utp.edu.my/3264/
_version_ 1738655256861999104