Study of the ionic liquids� electrochemical reduction using experimental and computational methods
Ionic liquids (ILs) as electrolytes have attracted attention because of their distinctive properties. Numerous studies on the electrochemical stability of the ILs have been published. However, a deep understanding of the parameters that affect the reduction stability is highly required. In this stud...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier B.V.
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130937208&doi=10.1016%2fj.molliq.2022.119219&partnerID=40&md5=3d327a2c26863e74555b67f5c9d174e3 http://eprints.utp.edu.my/33350/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.33350 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.333502022-07-26T08:19:36Z Study of the ionic liquids� electrochemical reduction using experimental and computational methods Abdalmageed Saadaldeen Mohammed, S. Yahya, W.Z.N. Bustam, M.A. Kibria, M.G. Masri, A.N. Mohd Kamonwel, N.D. Ionic liquids (ILs) as electrolytes have attracted attention because of their distinctive properties. Numerous studies on the electrochemical stability of the ILs have been published. However, a deep understanding of the parameters that affect the reduction stability is highly required. In this study, the reduction potentials of five ILs including two novel ILs that contain 1,2,4-triazolium as cation were evaluated experimentally using cyclic voltammetry (CV) and compared with computational modeling using Tmolex software and Conductor like Screening Model for Real Solvents (COSMO-RS). We investigate the parameters that affect the ILs� reduction stability such as the lowest unoccupied molecular orbital (LUMO) energy levels of the cations and anions, as well as the effect of the molecular interaction between them. We conclude that while using the computational method, the individual values of the LUMO of the cations or anions without taking into consideration the molecular interaction might misguide the prediction of the ILs reduction stability. © 2022 Elsevier B.V. Elsevier B.V. 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130937208&doi=10.1016%2fj.molliq.2022.119219&partnerID=40&md5=3d327a2c26863e74555b67f5c9d174e3 Abdalmageed Saadaldeen Mohammed, S. and Yahya, W.Z.N. and Bustam, M.A. and Kibria, M.G. and Masri, A.N. and Mohd Kamonwel, N.D. (2022) Study of the ionic liquids� electrochemical reduction using experimental and computational methods. Journal of Molecular Liquids, 359 . http://eprints.utp.edu.my/33350/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Ionic liquids (ILs) as electrolytes have attracted attention because of their distinctive properties. Numerous studies on the electrochemical stability of the ILs have been published. However, a deep understanding of the parameters that affect the reduction stability is highly required. In this study, the reduction potentials of five ILs including two novel ILs that contain 1,2,4-triazolium as cation were evaluated experimentally using cyclic voltammetry (CV) and compared with computational modeling using Tmolex software and Conductor like Screening Model for Real Solvents (COSMO-RS). We investigate the parameters that affect the ILs� reduction stability such as the lowest unoccupied molecular orbital (LUMO) energy levels of the cations and anions, as well as the effect of the molecular interaction between them. We conclude that while using the computational method, the individual values of the LUMO of the cations or anions without taking into consideration the molecular interaction might misguide the prediction of the ILs reduction stability. © 2022 Elsevier B.V. |
format |
Article |
author |
Abdalmageed Saadaldeen Mohammed, S. Yahya, W.Z.N. Bustam, M.A. Kibria, M.G. Masri, A.N. Mohd Kamonwel, N.D. |
spellingShingle |
Abdalmageed Saadaldeen Mohammed, S. Yahya, W.Z.N. Bustam, M.A. Kibria, M.G. Masri, A.N. Mohd Kamonwel, N.D. Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
author_facet |
Abdalmageed Saadaldeen Mohammed, S. Yahya, W.Z.N. Bustam, M.A. Kibria, M.G. Masri, A.N. Mohd Kamonwel, N.D. |
author_sort |
Abdalmageed Saadaldeen Mohammed, S. |
title |
Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
title_short |
Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
title_full |
Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
title_fullStr |
Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
title_full_unstemmed |
Study of the ionic liquids� electrochemical reduction using experimental and computational methods |
title_sort |
study of the ionic liquids� electrochemical reduction using experimental and computational methods |
publisher |
Elsevier B.V. |
publishDate |
2022 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130937208&doi=10.1016%2fj.molliq.2022.119219&partnerID=40&md5=3d327a2c26863e74555b67f5c9d174e3 http://eprints.utp.edu.my/33350/ |
_version_ |
1739833209983598592 |