AUTOREGRESSIVE MODELS IN SHORT TERM LOAD FORECAST: A COMPARISON OF AR AND ARMA

Short-term load forecasting plays an important role in planning and operation of power system. The accuracy of this forecasted value is necessary for economically efficient operation and also for effective control. This paper describes a comparison of autoregressive moving average (ARMA) and au...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Baharudin , Z.
التنسيق: Conference or Workshop Item
منشور في: The International Institute of Forecasters 2008
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utp.edu.my/6163/1/isf2008.pdf
http://forecasters.org/isf/pdfs/ISF2008_Proceedings.pdf
http://eprints.utp.edu.my/6163/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Teknologi Petronas
الوصف
الملخص:Short-term load forecasting plays an important role in planning and operation of power system. The accuracy of this forecasted value is necessary for economically efficient operation and also for effective control. This paper describes a comparison of autoregressive moving average (ARMA) and autoregressive (AR) Burg’s and modified covariance (MCOV) methods in solving one week ahead of short term load forecast. The methods are tested based from historical load data of National Grid of Malaysia and load demand in New South Wales, Australia. The accuracy of discussed methods are obtained and reported.