AUTOREGRESSIVE MODELS IN SHORT TERM LOAD FORECAST: A COMPARISON OF AR AND ARMA
Short-term load forecasting plays an important role in planning and operation of power system. The accuracy of this forecasted value is necessary for economically efficient operation and also for effective control. This paper describes a comparison of autoregressive moving average (ARMA) and au...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | Conference or Workshop Item |
منشور في: |
The International Institute of Forecasters
2008
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utp.edu.my/6163/1/isf2008.pdf http://forecasters.org/isf/pdfs/ISF2008_Proceedings.pdf http://eprints.utp.edu.my/6163/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Universiti Teknologi Petronas |
الملخص: | Short-term load forecasting plays an important role in
planning and operation of power system. The accuracy of this
forecasted value is necessary for economically efficient
operation and also for effective control. This paper describes a
comparison of autoregressive moving average (ARMA) and
autoregressive (AR) Burg’s and modified covariance
(MCOV) methods in solving one week ahead of short term
load forecast. The methods are tested based from historical
load data of National Grid of Malaysia and load demand in
New South Wales, Australia. The accuracy of discussed
methods are obtained and reported. |
---|