Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant

Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP)-Heat Recovery Steam Generator (HRSG), Steam H...

Full description

Saved in:
Bibliographic Details
Main Authors: Alemu Lemma, Tamiru, Rangkuti, Chalillullah, Mohd Hashim, Fakhruldin
Format: Conference or Workshop Item
Published: 2009
Subjects:
Online Access:http://eprints.utp.edu.my/7392/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.7392
record_format eprints
spelling my.utp.eprints.73922012-01-10T00:12:58Z Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant Alemu Lemma, Tamiru Rangkuti, Chalillullah Mohd Hashim, Fakhruldin TJ Mechanical engineering and machinery Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP)-Heat Recovery Steam Generator (HRSG), Steam Header (SH) and Steam Absorption Chiller (SAC). Neuro-fuzzy approach trained by a sequence of optimization algorithms-Particle Swarm Optimization (PSO) followed by Back-Propagation (BP)-is used to develop models for the steam drum pressure, steam drum water level, steam flow rate and chilled water supply temperature. It includes the calculation of model confidence intervals (CI) based on the assumption that model and measurement errors are normally distributed and independent. Real operation data collected from Universiti Teknologi PETRONAS CCP is used to train and validate the models. Varying the probability in reading the percentage value of t-distribution for fixed degrees of freedom, a test is also performed on the capacity of the models for fault detection. The results show that the technique can be used to develop a substitute model for the three units, with the confidence level decided by the user. 2009 Conference or Workshop Item PeerReviewed Alemu Lemma, Tamiru and Rangkuti, Chalillullah and Mohd Hashim, Fakhruldin (2009) Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant. In: International Conference on Energy and Environment (ICEE), 7 – 8 December 2009, Malacca, Malaysia. http://eprints.utp.edu.my/7392/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Alemu Lemma, Tamiru
Rangkuti, Chalillullah
Mohd Hashim, Fakhruldin
Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
description Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP)-Heat Recovery Steam Generator (HRSG), Steam Header (SH) and Steam Absorption Chiller (SAC). Neuro-fuzzy approach trained by a sequence of optimization algorithms-Particle Swarm Optimization (PSO) followed by Back-Propagation (BP)-is used to develop models for the steam drum pressure, steam drum water level, steam flow rate and chilled water supply temperature. It includes the calculation of model confidence intervals (CI) based on the assumption that model and measurement errors are normally distributed and independent. Real operation data collected from Universiti Teknologi PETRONAS CCP is used to train and validate the models. Varying the probability in reading the percentage value of t-distribution for fixed degrees of freedom, a test is also performed on the capacity of the models for fault detection. The results show that the technique can be used to develop a substitute model for the three units, with the confidence level decided by the user.
format Conference or Workshop Item
author Alemu Lemma, Tamiru
Rangkuti, Chalillullah
Mohd Hashim, Fakhruldin
author_facet Alemu Lemma, Tamiru
Rangkuti, Chalillullah
Mohd Hashim, Fakhruldin
author_sort Alemu Lemma, Tamiru
title Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
title_short Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
title_full Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
title_fullStr Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
title_full_unstemmed Neuro-Fuzzy and Particle Swarm Optimization based Model for the Steam and Cooling sections of a Cogeneration and Cooling Plant
title_sort neuro-fuzzy and particle swarm optimization based model for the steam and cooling sections of a cogeneration and cooling plant
publishDate 2009
url http://eprints.utp.edu.my/7392/
_version_ 1738655573563408384