Hydrodynamic performance of a free surface semicircular perforated breakwater
The increasing importance of the sustainability challenge in coastal engineering has led to the development of free surface breakwaters of various configurations. In this study, the hydrodynamic characteristics of a perforated semicircular free surface breakwater (SCB) are investigated for irregular...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2010
|
Subjects: | |
Online Access: | http://eprints.utp.edu.my/7719/1/2010_ICCE%2C_Shanghai.pdf http://journals.tdl.org/ICCE/article/view/1112 http://eprints.utp.edu.my/7719/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.7719 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.77192017-01-19T08:24:59Z Hydrodynamic performance of a free surface semicircular perforated breakwater Teh, Hee Min Venugopal, Vengatesan Bruce, Tom TC Hydraulic engineering. Ocean engineering TA Engineering (General). Civil engineering (General) The increasing importance of the sustainability challenge in coastal engineering has led to the development of free surface breakwaters of various configurations. In this study, the hydrodynamic characteristics of a perforated semicircular free surface breakwater (SCB) are investigated for irregular wave conditions. The hydrodynamic performance of the breakwater is evaluated in the form of transmission, reflection and energy dissipation coefficients, which are then presented as a function of the relative submergence depth (D/d) and the relative breakwater width (B/Lp), where D = the depth of immersion, d = the water depth, B = the breakwater width and Lp = the wavelength corresponding to the peak wave period. It is found that the wave attenuation ability of the SCB model improves with the increase of D/d and B/Lp. The SCB performs better as an energy dissipater than as a wave reflector. Based on the analysis of measured data, some empirical equations are proposed to predict the performance of the breakwater under varying submergence depths. The behaviour of wave transformation around and within the breakwater’s chamber is discussed. Also, the measured horizontal wave forces acting on the SCB are reported. 2010 Conference or Workshop Item PeerReviewed application/pdf http://eprints.utp.edu.my/7719/1/2010_ICCE%2C_Shanghai.pdf http://journals.tdl.org/ICCE/article/view/1112 Teh, Hee Min and Venugopal, Vengatesan and Bruce, Tom (2010) Hydrodynamic performance of a free surface semicircular perforated breakwater. In: 32nd International Conference on Coastal Engineering, June 30 - July 5, 2010, Shanghai, China. http://eprints.utp.edu.my/7719/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
topic |
TC Hydraulic engineering. Ocean engineering TA Engineering (General). Civil engineering (General) |
spellingShingle |
TC Hydraulic engineering. Ocean engineering TA Engineering (General). Civil engineering (General) Teh, Hee Min Venugopal, Vengatesan Bruce, Tom Hydrodynamic performance of a free surface semicircular perforated breakwater |
description |
The increasing importance of the sustainability challenge in coastal engineering has led to the development of free surface breakwaters of various configurations. In this study, the hydrodynamic characteristics of a perforated semicircular free surface breakwater (SCB) are investigated for irregular wave conditions. The hydrodynamic performance of the breakwater is evaluated in the form of transmission, reflection and energy dissipation coefficients, which are then presented as a function of the relative submergence depth (D/d) and the relative breakwater width (B/Lp), where D = the depth of immersion, d = the water depth, B = the breakwater width and Lp = the wavelength corresponding to the peak wave period. It is found that the wave attenuation ability of the SCB model improves with the increase of D/d and B/Lp. The SCB performs better as an energy dissipater than as a wave reflector. Based on the analysis of measured data, some empirical equations are proposed to predict the performance of the breakwater under varying submergence depths. The behaviour of wave transformation around and within the breakwater’s chamber is discussed. Also, the measured horizontal wave forces acting on the SCB are reported.
|
format |
Conference or Workshop Item |
author |
Teh, Hee Min Venugopal, Vengatesan Bruce, Tom |
author_facet |
Teh, Hee Min Venugopal, Vengatesan Bruce, Tom |
author_sort |
Teh, Hee Min |
title |
Hydrodynamic performance of a free surface semicircular perforated breakwater |
title_short |
Hydrodynamic performance of a free surface semicircular perforated breakwater |
title_full |
Hydrodynamic performance of a free surface semicircular perforated breakwater |
title_fullStr |
Hydrodynamic performance of a free surface semicircular perforated breakwater |
title_full_unstemmed |
Hydrodynamic performance of a free surface semicircular perforated breakwater |
title_sort |
hydrodynamic performance of a free surface semicircular perforated breakwater |
publishDate |
2010 |
url |
http://eprints.utp.edu.my/7719/1/2010_ICCE%2C_Shanghai.pdf http://journals.tdl.org/ICCE/article/view/1112 http://eprints.utp.edu.my/7719/ |
_version_ |
1738655596989644800 |