A dynamic eLearning prediction modelbased on incomplete activities of eLearning system
At present, eLearning usage is diverse because the eLearning activities used in teaching and learning differ depending on educators. The selection of activities in different eLearning usage affect the prediction of learning outcomes. However, most eLearning outcome prediction models are still unsta...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English English |
Published: |
2020
|
Subjects: | |
Online Access: | https://etd.uum.edu.my/9162/1/Deposit%20Permission_s93189.pdf https://etd.uum.edu.my/9162/2/s93189_01.pdf https://etd.uum.edu.my/9162/3/s93189_references.docx https://etd.uum.edu.my/9162/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Utara Malaysia |
Language: | English English English |
id |
my.uum.etd.9162 |
---|---|
record_format |
eprints |
spelling |
my.uum.etd.91622022-03-28T01:15:18Z https://etd.uum.edu.my/9162/ A dynamic eLearning prediction modelbased on incomplete activities of eLearning system Chayanukro, Songsakda T58.5-58.64 Information technology L Education (General) At present, eLearning usage is diverse because the eLearning activities used in teaching and learning differ depending on educators. The selection of activities in different eLearning usage affect the prediction of learning outcomes. However, most eLearning outcome prediction models are still unstable and inapplicable in many situations as the eLearning usage is considered to be highly dynamic. Therefore, the objectives of this study are: a) to analyze the eLearning activities that affect learning outcome; b) to construct a learning outcome prediction model for eLearning usage; c) to synthesize a dynamic eLearning prediction model based on incomplete activities of eLearning systems; and d) to evaluate the dynamic eLearning prediction model based on advantage, accuracy, and effectiveness. This study was conducted through seven steps: initial study; data collection; data pre-processing; eLearning activity analysis; learning outcome prediction model construction; eLearning prediction model synthesizing; and model evaluation. Six data mining algorithms were used in evaluating the model. The results found seven significant groups of eLearning activities that could predict the learning outcome with more than 75% accuracy. Of the seven significant groups, two groups of activities have Receiver Operating Characteristic values greater than 0.5. Hence, this study demonstrates that using data from incomplete activities of eLearning systems provides an appropriate means for predictable learning outcomes. The prediction model contributes to an optimal number of classes and data set where two classes received the highest accuracy ratio. Practically, the results of this study may assist towards improving management and reducing educational costs. 2020 Thesis NonPeerReviewed text en https://etd.uum.edu.my/9162/1/Deposit%20Permission_s93189.pdf text en https://etd.uum.edu.my/9162/2/s93189_01.pdf text en https://etd.uum.edu.my/9162/3/s93189_references.docx Chayanukro, Songsakda (2020) A dynamic eLearning prediction modelbased on incomplete activities of eLearning system. Doctoral thesis, Universiti Utara Malaysia. |
institution |
Universiti Utara Malaysia |
building |
UUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Utara Malaysia |
content_source |
UUM Electronic Theses |
url_provider |
http://etd.uum.edu.my/ |
language |
English English English |
topic |
T58.5-58.64 Information technology L Education (General) |
spellingShingle |
T58.5-58.64 Information technology L Education (General) Chayanukro, Songsakda A dynamic eLearning prediction modelbased on incomplete activities of eLearning system |
description |
At present, eLearning usage is diverse because the eLearning activities used in teaching and learning differ depending on educators. The selection of activities in different eLearning usage affect the prediction of learning outcomes. However, most
eLearning outcome prediction models are still unstable and inapplicable in many situations as the eLearning usage is considered to be highly dynamic. Therefore, the objectives of this study are: a) to analyze the eLearning activities that affect learning
outcome; b) to construct a learning outcome prediction model for eLearning usage; c) to synthesize a dynamic eLearning prediction model based on incomplete activities of eLearning systems; and d) to evaluate the dynamic eLearning prediction model based on advantage, accuracy, and effectiveness. This study was conducted
through seven steps: initial study; data collection; data pre-processing; eLearning activity analysis; learning outcome prediction model construction; eLearning prediction model synthesizing; and model evaluation. Six data mining algorithms were used in evaluating the model. The results found seven significant groups of
eLearning activities that could predict the learning outcome with more than 75% accuracy. Of the seven significant groups, two groups of activities have Receiver Operating Characteristic values greater than 0.5. Hence, this study demonstrates that using data from incomplete activities of eLearning systems provides an appropriate means for predictable learning outcomes. The prediction model contributes to an optimal number of classes and data set where two classes received the highest accuracy ratio. Practically, the results of this study may assist towards improving management and reducing educational costs. |
format |
Thesis |
author |
Chayanukro, Songsakda |
author_facet |
Chayanukro, Songsakda |
author_sort |
Chayanukro, Songsakda |
title |
A dynamic eLearning prediction modelbased on incomplete
activities of eLearning system |
title_short |
A dynamic eLearning prediction modelbased on incomplete
activities of eLearning system |
title_full |
A dynamic eLearning prediction modelbased on incomplete
activities of eLearning system |
title_fullStr |
A dynamic eLearning prediction modelbased on incomplete
activities of eLearning system |
title_full_unstemmed |
A dynamic eLearning prediction modelbased on incomplete
activities of eLearning system |
title_sort |
dynamic elearning prediction modelbased on incomplete
activities of elearning system |
publishDate |
2020 |
url |
https://etd.uum.edu.my/9162/1/Deposit%20Permission_s93189.pdf https://etd.uum.edu.my/9162/2/s93189_01.pdf https://etd.uum.edu.my/9162/3/s93189_references.docx https://etd.uum.edu.my/9162/ |
_version_ |
1729706561341751296 |