Predicting Diseases Using Multi-BackPropagation

A Computer-based medical system plays an important role in the current practice of medicine. Initially, computer is used to store and manage information effectively. The computer becomes more important with the introduction of the intelligent system. The intelligent medical system increases the abi...

Full description

Saved in:
Bibliographic Details
Main Author: Wan Hussain, Wan Ishak
Format: Thesis
Language:English
English
Published: 2002
Subjects:
Online Access:http://etd.uum.edu.my/979/1/WAN_HUSSAIN_B._WAN_ISHAK.pdf
http://etd.uum.edu.my/979/2/1.WAN_HUSSAIN_B._WAN_ISHAK.pdf
http://etd.uum.edu.my/979/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Utara Malaysia
Language: English
English
id my.uum.etd.979
record_format eprints
spelling my.uum.etd.9792013-07-24T12:09:54Z http://etd.uum.edu.my/979/ Predicting Diseases Using Multi-BackPropagation Wan Hussain, Wan Ishak RC Internal medicine A Computer-based medical system plays an important role in the current practice of medicine. Initially, computer is used to store and manage information effectively. The computer becomes more important with the introduction of the intelligent system. The intelligent medical system increases the ability of medical practitioners in providing diagnosis and prognosis. Neural network is one of the artificial intelligence techniques that emulate the human neuron function. Neural network enable the computer to "learn" and "think" like human. However, learning usually involves a large amount of data. If more data is used, the network complexity will be increased. Complex network is hard to learn and take more time to generalize. Thus this study proposed a multi-network approach as oppose to the single network approach. Multi-network approach does not require any changes in neural network learning algorithm. Instead, the large data is divided into several smaller categories or network. Both approaches are tested and compared. The results show that the estimation time for the single network with 26 variables based on 7466 data set is approximately 1,037,472,836 milliseconds to complete the learning with 100 percent generalization performance. On the other hand, based on 256 data sets the network takes 2,459,172,864 milliseconds to complete the learning. The epochs are estimated as 359,544 and 26,2 14,400 respectively. In the multi-network approach, five different networks and one integration network were constructed. The experiments showed that all six networks managed to learn the data completely in only several epochs. The time taken by the networks are 281, 197, 32, 440, 83 and 22 respectively for the risk factor, medication, investigation, ECG, complication and integrating network. On average, this approach takes 175.833 milliseconds and 7.66667 epochs to complete the learning. The total training time for all networks to learn is 1055 milliseconds with 46 epochs. Although many networks have to be constructed and trained separately, the multinetwork approach has reduced the complexity of network with large data set and has overcome the limitation of the single network approach. This is because the networks represent all the possible combination of data, which were all used to train them respectively. That is in the multi network approach all data sets are used in training. The knowledge (weight) produced by the network can be applied for all possible data sets. 2002 Thesis NonPeerReviewed application/pdf en http://etd.uum.edu.my/979/1/WAN_HUSSAIN_B._WAN_ISHAK.pdf application/pdf en http://etd.uum.edu.my/979/2/1.WAN_HUSSAIN_B._WAN_ISHAK.pdf Wan Hussain, Wan Ishak (2002) Predicting Diseases Using Multi-BackPropagation. Masters thesis, Universiti Utara Malaysia.
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Electronic Theses
url_provider http://etd.uum.edu.my/
language English
English
topic RC Internal medicine
spellingShingle RC Internal medicine
Wan Hussain, Wan Ishak
Predicting Diseases Using Multi-BackPropagation
description A Computer-based medical system plays an important role in the current practice of medicine. Initially, computer is used to store and manage information effectively. The computer becomes more important with the introduction of the intelligent system. The intelligent medical system increases the ability of medical practitioners in providing diagnosis and prognosis. Neural network is one of the artificial intelligence techniques that emulate the human neuron function. Neural network enable the computer to "learn" and "think" like human. However, learning usually involves a large amount of data. If more data is used, the network complexity will be increased. Complex network is hard to learn and take more time to generalize. Thus this study proposed a multi-network approach as oppose to the single network approach. Multi-network approach does not require any changes in neural network learning algorithm. Instead, the large data is divided into several smaller categories or network. Both approaches are tested and compared. The results show that the estimation time for the single network with 26 variables based on 7466 data set is approximately 1,037,472,836 milliseconds to complete the learning with 100 percent generalization performance. On the other hand, based on 256 data sets the network takes 2,459,172,864 milliseconds to complete the learning. The epochs are estimated as 359,544 and 26,2 14,400 respectively. In the multi-network approach, five different networks and one integration network were constructed. The experiments showed that all six networks managed to learn the data completely in only several epochs. The time taken by the networks are 281, 197, 32, 440, 83 and 22 respectively for the risk factor, medication, investigation, ECG, complication and integrating network. On average, this approach takes 175.833 milliseconds and 7.66667 epochs to complete the learning. The total training time for all networks to learn is 1055 milliseconds with 46 epochs. Although many networks have to be constructed and trained separately, the multinetwork approach has reduced the complexity of network with large data set and has overcome the limitation of the single network approach. This is because the networks represent all the possible combination of data, which were all used to train them respectively. That is in the multi network approach all data sets are used in training. The knowledge (weight) produced by the network can be applied for all possible data sets.
format Thesis
author Wan Hussain, Wan Ishak
author_facet Wan Hussain, Wan Ishak
author_sort Wan Hussain, Wan Ishak
title Predicting Diseases Using Multi-BackPropagation
title_short Predicting Diseases Using Multi-BackPropagation
title_full Predicting Diseases Using Multi-BackPropagation
title_fullStr Predicting Diseases Using Multi-BackPropagation
title_full_unstemmed Predicting Diseases Using Multi-BackPropagation
title_sort predicting diseases using multi-backpropagation
publishDate 2002
url http://etd.uum.edu.my/979/1/WAN_HUSSAIN_B._WAN_ISHAK.pdf
http://etd.uum.edu.my/979/2/1.WAN_HUSSAIN_B._WAN_ISHAK.pdf
http://etd.uum.edu.my/979/
_version_ 1644276337579393024