A new feature set partitioning method for nearest mean classifier ensembles

Nearest Mean Classifier (NMC)provides good performance for small sample size problem. However concatenate different features into a high dimensional feature vectors and process them using a single NMC generally does not give good results because of dimensionality problem.In this new method, the fea...

Full description

Saved in:
Bibliographic Details
Main Authors: Ku-Mahamud, Ku Ruhana, Sediyono, Agung
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:http://repo.uum.edu.my/11967/1/PID54.pdf
http://repo.uum.edu.my/11967/
http://www.icoci.cms.net.my/proceedings/2013/TOC.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Utara Malaysia
Language: English
Description
Summary:Nearest Mean Classifier (NMC)provides good performance for small sample size problem. However concatenate different features into a high dimensional feature vectors and process them using a single NMC generally does not give good results because of dimensionality problem.In this new method, the feature set is partitioned into disjoint feature subset based on diversity in ensemble.NMC ensemble is constructed by assigning each individual classifier in the ensemble with a cluster from different feature subset.The advantage of this method is that all available information in the training set is used.There is no irrelevant feature in the training set that was eliminated.Based on experimental results the new method shows a significant improvement with high statistical confidence.