Mussels wandering optimization algorithmn based training of artificial neural networks for pattern classification

Training an artificial neural network (ANN) is an optimization task since it is desired to find optimal neurons‘ weight of a neural network in an iterative training process. Traditional training algorithms have some drawbacks such as local minima and its slowness.Therefore, evolutionary algorithms a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Abusnaina, Ahmed A., Abdullah, Rosni
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:http://repo.uum.edu.my/11972/1/PID105.pdf
http://repo.uum.edu.my/11972/
http://www.icoci.cms.net.my/proceedings/2013/TOC.html
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Training an artificial neural network (ANN) is an optimization task since it is desired to find optimal neurons‘ weight of a neural network in an iterative training process. Traditional training algorithms have some drawbacks such as local minima and its slowness.Therefore, evolutionary algorithms are utilized to train neural networks to overcome these issues.This research tackles the ANN training by adapting Mussels Wandering Optimization (MWO) algorithm.The proposed method tested and verified by training an ANN with well-known benchmarking problems.Two criteria used to evaluate the proposed method were overall training time and classification accuracy.The obtained results indicate that MWO algorithm is on par or better in terms of classification accuracy and convergence training time.