Gasoline price forecasting: An application of LSSVM with improved ABC

Optimizing the hyper-parameters of Least Squares Support Vector Machines (LSSVM) is crucial as it will directly influence the predictive power of the algorithm.To tackle such issue, this study proposes an improved Artificial Bee Colony (IABC) algorithm which is based on conventional mutation.The IAB...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mustaffa, Zuriani, Yusof, Yuhanis, Kamaruddin, Siti Sakira
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: Elsevier Ltd. 2014
الموضوعات:
الوصول للمادة أونلاين:http://repo.uum.edu.my/14831/1/1-s2.0RG.pdf
http://repo.uum.edu.my/14831/
http://doi.org/10.1016/j.sbspro.2014.03.718
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Optimizing the hyper-parameters of Least Squares Support Vector Machines (LSSVM) is crucial as it will directly influence the predictive power of the algorithm.To tackle such issue, this study proposes an improved Artificial Bee Colony (IABC) algorithm which is based on conventional mutation.The IABC serves as an optimizer for LSSVM.Realized in gasoline price forecasting, the performance is guided based on Mean Absolute Percentage Error (MAPE) and Root Mean Square Percentage Error (RMSPE).The conducted simulation results show that, the proposed IABCLSSVM outperforms the results produced by ABC-LSSVM and also the Back Propagation Neural Network.