Fuzzy and smote resampling technique for imbalanced data sets
There are many factors that could affect the performance of a classifier.One of these factors is having imbalanced datasets which could lead to problem in classification accuracy.In binary classification, classifier often ignores instances in minority class.Resampling technique, specifically, unders...
Saved in:
Main Authors: | , , |
---|---|
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | http://repo.uum.edu.my/15646/1/PID160.pdf http://repo.uum.edu.my/15646/ http://www.icoci.cms.net.my/proceedings/2015/TOC.html |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | There are many factors that could affect the performance of a classifier.One of these factors is having imbalanced datasets which could lead to problem in classification accuracy.In binary classification, classifier often ignores instances in minority class.Resampling technique, specifically, undersampling and oversampling are the techniques that are commonly used to overcome the problem related to imbalanced data sets. In this study, an integration of undersampling and oversampling techniques is proposed to
improve classification accuracy.The proposed technique is an integration between Fuzzy Distance-based Undersampling and SMOTE.The findings from the study indicate that the proposed combination technique is able to produce more balanced datasets to improve the classification accuracy. |
---|