Modeling the asymmetric in conditional variance

The purpose of this study is to model the asymmetric in conditional variance of Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) with Combine White Noise (CWN) model to obtain suitable results. Combine white noise has the minimum information criteria and high log likel...

Full description

Saved in:
Bibliographic Details
Main Authors: Agboluaje, Ayodele Abraham, Ismail, Suzilah, Yip, Chee Yin
Format: Article
Language:English
Published: Science Alert 2016
Subjects:
Online Access:http://repo.uum.edu.my/21521/1/AJSR%20%209%202%20%202016%20%2039-44.pdf
http://repo.uum.edu.my/21521/
http://doi.org/10.3923/ajsr.2016.39.44
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Utara Malaysia
Language: English
id my.uum.repo.21521
record_format eprints
spelling my.uum.repo.215212017-04-05T08:31:36Z http://repo.uum.edu.my/21521/ Modeling the asymmetric in conditional variance Agboluaje, Ayodele Abraham Ismail, Suzilah Yip, Chee Yin QA Mathematics The purpose of this study is to model the asymmetric in conditional variance of Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) with Combine White Noise (CWN) model to obtain suitable results. Combine white noise has the minimum information criteria and high log likelihood when compare with EGARCH estimation.The determinant of the residual covariance matrixvalue indicates that CWN estimation is efficient. Combine white noise has minimum information criteria and high log likelihood value that signify suitable estimation. Combine white noise has a minimum forecast errors which indicates forecast accuracy.Combine white noise estimation results have proved more efficient when compared with EGARCH model estimation Science Alert 2016 Article PeerReviewed application/pdf en cc4_by http://repo.uum.edu.my/21521/1/AJSR%20%209%202%20%202016%20%2039-44.pdf Agboluaje, Ayodele Abraham and Ismail, Suzilah and Yip, Chee Yin (2016) Modeling the asymmetric in conditional variance. Asian Journal of Scientific Research, 9 (2). pp. 39-44. ISSN 1992-1454 http://doi.org/10.3923/ajsr.2016.39.44 doi:10.3923/ajsr.2016.39.44
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Institutionali Repository
url_provider http://repo.uum.edu.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Agboluaje, Ayodele Abraham
Ismail, Suzilah
Yip, Chee Yin
Modeling the asymmetric in conditional variance
description The purpose of this study is to model the asymmetric in conditional variance of Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) with Combine White Noise (CWN) model to obtain suitable results. Combine white noise has the minimum information criteria and high log likelihood when compare with EGARCH estimation.The determinant of the residual covariance matrixvalue indicates that CWN estimation is efficient. Combine white noise has minimum information criteria and high log likelihood value that signify suitable estimation. Combine white noise has a minimum forecast errors which indicates forecast accuracy.Combine white noise estimation results have proved more efficient when compared with EGARCH model estimation
format Article
author Agboluaje, Ayodele Abraham
Ismail, Suzilah
Yip, Chee Yin
author_facet Agboluaje, Ayodele Abraham
Ismail, Suzilah
Yip, Chee Yin
author_sort Agboluaje, Ayodele Abraham
title Modeling the asymmetric in conditional variance
title_short Modeling the asymmetric in conditional variance
title_full Modeling the asymmetric in conditional variance
title_fullStr Modeling the asymmetric in conditional variance
title_full_unstemmed Modeling the asymmetric in conditional variance
title_sort modeling the asymmetric in conditional variance
publisher Science Alert
publishDate 2016
url http://repo.uum.edu.my/21521/1/AJSR%20%209%202%20%202016%20%2039-44.pdf
http://repo.uum.edu.my/21521/
http://doi.org/10.3923/ajsr.2016.39.44
_version_ 1644283260954476544