Notes on a theorem of Katznelson and Ornstein

Let logf′ be an absolutely continuous and f′′/f′∈Lp(S1,dℓ) for some p>1, where ℓ is Lebesgue measure. We show that there exists a subset of irrational numbers of unbounded type, such that for any element ρˆ of this subset, the linear rotation Rρˆ and the shift ft=f+tmod1, t∈[0,1) with rotation nu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Akhadkulov, Habibulla, Dzhalilov, Akhtam, Khanin, Konstantin
التنسيق: مقال
منشور في: American Institute of Mathematical Sciences 2017
الموضوعات:
الوصول للمادة أونلاين:http://repo.uum.edu.my/23043/
http://doi.org/10.3934/dcds.2017197
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Utara Malaysia
الوصف
الملخص:Let logf′ be an absolutely continuous and f′′/f′∈Lp(S1,dℓ) for some p>1, where ℓ is Lebesgue measure. We show that there exists a subset of irrational numbers of unbounded type, such that for any element ρˆ of this subset, the linear rotation Rρˆ and the shift ft=f+tmod1, t∈[0,1) with rotation number ρˆ, are absolutely continuously conjugate.We also introduce a certain Zygmund-type condition depending on a parameter γ, and prove that in the case γ>12 there exists a subset of irrational numbers of unbounded type, such that every circle diffeomorphism satisfying the corresponding Zygmund condition is absolutely continuously conjugate to the linear rotation provided its rotation number belongs to the above set.Moreover, in the case of γ>1, we show that the conjugacy is C1-smooth.