Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction

Energy consumption planning of an area is very important. It is essential to accurately predict the amount of short-term power required by an area using a highly effective prediction technique. The real-value-genetics-algorithm (RVGA) is the most effective technique that is currently used. However,...

Full description

Saved in:
Bibliographic Details
Main Authors: Musa, Wahab, Ku Mahamud, Ku Ruhana, Salim, Sardi, Sediyono, Agung
Format: Article
Language:English
Published: Universiti Utara Malaysia Press 2024
Subjects:
Online Access:https://repo.uum.edu.my/id/eprint/30347/1/JICT%2023%2001%202024%2025-47.pdf
https://doi.org/10.32890/jict2024.23.1.2
https://repo.uum.edu.my/id/eprint/30347/
https://e-journal.uum.edu.my/index.php/jict/article/view/20064
https://doi.org/10.32890/jict2024.23.1.2
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Utara Malaysia
Language: English
id my.uum.repo.30347
record_format eprints
spelling my.uum.repo.303472024-02-01T13:55:13Z https://repo.uum.edu.my/id/eprint/30347/ Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction Musa, Wahab Ku Mahamud, Ku Ruhana Salim, Sardi Sediyono, Agung TA Engineering (General). Civil engineering (General) Energy consumption planning of an area is very important. It is essential to accurately predict the amount of short-term power required by an area using a highly effective prediction technique. The real-value-genetics-algorithm (RVGA) is the most effective technique that is currently used. However, the RVGA has some drawbacks, including the fact that it gets caught in premature convergence even when the search is performed over long iterations. This study proposes a hybrid prediction algorithm which comprises the RVGA and the extended-Nelder-Mead (ENM) algorithm. The ENM was implemented to speed up the search for the best among all solutions produced by the RVGA. The RVGA was configured to run under small iterations, and the ENM was used to achieve convergence. Experiments were performed on historical datasets containing the monthly electricity demand of the Gorontalo area, a region in Indonesia. The performance of the hybrid algorithm was compared to the hybrid Genetic Algorithm-Particle Swarm Optimisation (GA-PSO) and Real Coded-Genetic Algorithm (RC-GA) energy demand models based on the mean-absolute-percentage-error (MAPE), mean-square-error (MSE), root-mean-square-error (RMSE), and mean-absolute-deviation (MAD) error rates. The results showed that the proposed hybrid algorithm’s MAPE, MSE, RMSE, and MAD errors were 2.95 percent, 0.13 percent, 0.36 percent and 1.29 percent, respectively. Based on the accuracy measure obtained from this study, it implies that the RVGAENM hybrid is the best model for forecasting monthly electricity demand. Universiti Utara Malaysia Press 2024 Article PeerReviewed application/pdf en cc4_by https://repo.uum.edu.my/id/eprint/30347/1/JICT%2023%2001%202024%2025-47.pdf Musa, Wahab and Ku Mahamud, Ku Ruhana and Salim, Sardi and Sediyono, Agung (2024) Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction. Journal of Information and Communication Technology, 23 (1). pp. 25-47. ISSN 2180-3862 https://e-journal.uum.edu.my/index.php/jict/article/view/20064 https://doi.org/10.32890/jict2024.23.1.2 https://doi.org/10.32890/jict2024.23.1.2
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Institutional Repository
url_provider http://repo.uum.edu.my/
language English
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Musa, Wahab
Ku Mahamud, Ku Ruhana
Salim, Sardi
Sediyono, Agung
Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
description Energy consumption planning of an area is very important. It is essential to accurately predict the amount of short-term power required by an area using a highly effective prediction technique. The real-value-genetics-algorithm (RVGA) is the most effective technique that is currently used. However, the RVGA has some drawbacks, including the fact that it gets caught in premature convergence even when the search is performed over long iterations. This study proposes a hybrid prediction algorithm which comprises the RVGA and the extended-Nelder-Mead (ENM) algorithm. The ENM was implemented to speed up the search for the best among all solutions produced by the RVGA. The RVGA was configured to run under small iterations, and the ENM was used to achieve convergence. Experiments were performed on historical datasets containing the monthly electricity demand of the Gorontalo area, a region in Indonesia. The performance of the hybrid algorithm was compared to the hybrid Genetic Algorithm-Particle Swarm Optimisation (GA-PSO) and Real Coded-Genetic Algorithm (RC-GA) energy demand models based on the mean-absolute-percentage-error (MAPE), mean-square-error (MSE), root-mean-square-error (RMSE), and mean-absolute-deviation (MAD) error rates. The results showed that the proposed hybrid algorithm’s MAPE, MSE, RMSE, and MAD errors were 2.95 percent, 0.13 percent, 0.36 percent and 1.29 percent, respectively. Based on the accuracy measure obtained from this study, it implies that the RVGAENM hybrid is the best model for forecasting monthly electricity demand.
format Article
author Musa, Wahab
Ku Mahamud, Ku Ruhana
Salim, Sardi
Sediyono, Agung
author_facet Musa, Wahab
Ku Mahamud, Ku Ruhana
Salim, Sardi
Sediyono, Agung
author_sort Musa, Wahab
title Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
title_short Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
title_full Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
title_fullStr Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
title_full_unstemmed Hybrid Real-Value-Genetic-Algorithm and Extended-Nelder- Mead Algorithm for Short Term Energy Demand Prediction
title_sort hybrid real-value-genetic-algorithm and extended-nelder- mead algorithm for short term energy demand prediction
publisher Universiti Utara Malaysia Press
publishDate 2024
url https://repo.uum.edu.my/id/eprint/30347/1/JICT%2023%2001%202024%2025-47.pdf
https://doi.org/10.32890/jict2024.23.1.2
https://repo.uum.edu.my/id/eprint/30347/
https://e-journal.uum.edu.my/index.php/jict/article/view/20064
https://doi.org/10.32890/jict2024.23.1.2
_version_ 1789943850220912640