B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness
Let be a set of n sample points in the d-cube Id≔[0,1]d, and a family of n functions on Id. We define the linear sampling algorithm Ln(Φ,ξ,⋅) for an approximate recovery of a continuous function f on Id from the sampled values f(x1),…,f(xn), by For the Besov class of mixed smoothness α,...
Saved in:
主要作者: | Dinh Dũng |
---|---|
格式: | 圖書 Article Dataset |
語言: | Vietnamese |
出版: |
Journal of Complexity
2016
|
主題: | |
在線閱讀: | http://repository.vnu.edu.vn/handle/VNU_123/10978 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square
由: Dinh Dũng, Tino Ullrich
出版: (2016) -
Continuous algorithms in adaptive sampling recovery
由: Dinh Dũng
出版: (2016) -
A simple and efficient monotone smoother using smoothing splines
由: Zhang, J.-T.
出版: (2014) -
SiZer for smoothing splines
由: Marron, J.S., et al.
出版: (2014) -
A sinusoidal polynomial spline and its Bezier blended interpolant
由: Loe, K.F.
出版: (2014)